scholarly journals Sensory suppression and increased neuromodulation during actions disrupt memory encoding of unpredictable self-initiated stimuli

2021 ◽  
Author(s):  
Nadia Paraskevoudi ◽  
Iria SanMiguel

Actions modulate sensory processing by attenuating responses to self- compared to externally-generated inputs, which is traditionally attributed to stimulus-specific motor predictions. Yet, suppression has been also found for stimuli merely coinciding with actions, pointing to unspecific processes that may be driven by neuromodulatory systems. Meanwhile, the differential processing for self-generated stimuli raises the possibility of producing effects also on memory for these stimuli, however, evidence remains mixed as to the direction of the effects. Here, we assessed the effects of actions on sensory processing and memory encoding of concomitant, but unpredictable sounds, using a combination of self-generation and memory recognition task concurrently with EEG and pupil recordings. At encoding, subjects performed button presses that half of the time generated a sound (motor-auditory; MA) and listened to passively presented sounds (auditory-only; A). At retrieval, two sounds were presented and participants had to respond which one was present before. We measured memory bias and memory performance by having sequences where either both or only one of the test sounds were presented at encoding, respectively. Results showed worse memory performance — but no differences in memory bias — and attenuated responses and larger pupil diameter for MA compared to A sounds. Critically, the larger the sensory attenuation and pupil diameter, the worse the memory performance for MA sounds. Nevertheless, sensory attenuation did not correlate with pupil dilation. Collectively, our findings suggest that sensory attenuation and neuromodulatory processes coexist during actions, and both relate to disrupted memory for concurrent, albeit unpredictable sounds.

2021 ◽  
pp. 174702182110263
Author(s):  
Philippe Blondé ◽  
Marco Sperduti ◽  
Dominique Makowski ◽  
Pascale Piolino

Mind wandering, defined as focusing attention toward task unrelated thoughts, is a common mental state known to impair memory encoding. This phenomenon is closely linked to boredom. Very few studies, however, have tested the potential impact of boredom on memory encoding. Thus, the present study aimed at manipulating mind wandering and boredom during an incidental memory encoding task, to test their differential impact on memory encoding. Thirty-two participants performed a variant of the n-back task in which they had to indicate if the current on-screen object was the same as the previous one (1-back; low working memory load) or the one presented three trials before (3-back; high working memory load). Moreover, thought probes assessing either mind wandering or boredom were randomly presented. Afterward, a surprise recognition task was delivered. Results showed that mind wandering and boredom were highly correlated, and both decreased in the high working memory load condition, while memory performance increased. Although both boredom and mind wandering predicted memory performance taken separately, we found that mind wandering was the only reliable predictor of memory performance when controlling for boredom and working memory load. Model comparisons also revealed that a model with boredom only was outperformed by a model with mind wandering only and a model with both mind wandering and boredom, suggesting that the predictive contribution of boredom in the complete model is minimal. The present results confirm the high correlation between mind wandering and boredom and suggest that the hindering effect of boredom on memory is subordinate to the effect of mind wandering.


2021 ◽  
Vol 15 ◽  
Author(s):  
Soyeon Jun ◽  
June Sic Kim ◽  
Chun Kee Chung

Prediction of successful memory encoding is important for learning. High-frequency activity (HFA), such as gamma frequency activity (30–150 Hz) of cortical oscillations, is induced during memory tasks and is thought to reflect underlying neuronal processes. Previous studies have demonstrated that medio-temporal electrophysiological characteristics are related to memory formation, but the effects of neocortical neural activity remain underexplored. The main aim of the present study was to evaluate the ability of gamma activity in human electrocorticography (ECoG) signals to differentiate memory processes into remembered and forgotten memories. A support vector machine (SVM) was employed, and ECoG recordings were collected from six subjects during verbal memory recognition task performance. Two-class classification using an SVM was performed to predict subsequently remembered vs. forgotten trials based on individually selected frequencies (low gamma, 30–60 Hz; high gamma, 60–150 Hz) at time points during pre- and during stimulus intervals. The SVM classifier distinguished memory performance between remembered and forgotten trials with a mean maximum accuracy of 87.5% using temporal cortical gamma activity during the 0- to 1-s interval. Our results support the functional relevance of ECoG for memory formation and suggest that lateral temporal cortical HFA may be utilized for memory prediction.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
A-Yong Yu ◽  
Hua Guo ◽  
Qin-Mei Wang ◽  
Fang-Jun Bao ◽  
Jing-Hai Huang

Objective. To investigate mydriatic effect of intracamerally injected epinephrine hydrochloride during phacoemulsification and intraocular lens (IOL) implantation.Methods. Eighteen cataract patients for bilateral phacoemulsification were enrolled. To dilate pupil, one eye was randomly selected to receive intracamerally 1 mL epinephrine hydrochloride 0.001% for 1 minute after corneal incision (intracameral group), and the contralateral eye received 3 drops of compound tropicamide 0.5% and phenylephrine 0.5% at 5-minute intervals 30 minutes before surgery (topical group). Pupil diameters were measured before corneal incision, before ophthalmic viscoelastic device (OVD) injection, after OVD injection, before IOL implantation, and at the end of surgery.Results. At each time point, the mean pupil diameter in the intracameral group was2.20±0.08,5.09±0.20,6.76±0.19,6.48±0.18, and5.97±0.24 mm, respectively, and in the topical group it was7.98±0.15,7.98±0.15,8.53±0.14,8.27±0.16, and7.93±0.20 mm, respectively. The topical group consistently had larger mydriatic effects than the intracameral group (P<0.05). The onset of mydriatic effect was rapid in the intracameral group. There was no difference in surgical performance or other parameters between groups.Conclusions. Intracameral epinephrine hydrochloride appears to be an alternative to the mydriatic modalities for phacoemulsification and IOL implantation. In comparison with topical mydriatics, intracameral epinephrine hydrochloride offers easier preoperative preparation, more rapid pupil dilation, and comparable surgical performance.


2017 ◽  
Vol 30 (7-8) ◽  
pp. 763-781 ◽  
Author(s):  
Jenni Heikkilä ◽  
Kimmo Alho ◽  
Kaisa Tiippana

Audiovisual semantic congruency during memory encoding has been shown to facilitate later recognition memory performance. However, it is still unclear whether this improvement is due to multisensory semantic congruency or just semantic congruencyper se. We investigated whether dual visual encoding facilitates recognition memory in the same way as audiovisual encoding. The participants memorized auditory or visual stimuli paired with a semantically congruent, incongruent or non-semantic stimulus in the same modality or in the other modality during encoding. Subsequent recognition memory performance was better when the stimulus was initially paired with a semantically congruent stimulus than when it was paired with a non-semantic stimulus. This congruency effect was observed with both audiovisual and dual visual stimuli. The present results indicate that not only multisensory but also unisensory semantically congruent stimuli can improve memory performance. Thus, the semantic congruency effect is not solely a multisensory phenomenon, as has been suggested previously.


2009 ◽  
Vol 21 (4) ◽  
pp. 821-836 ◽  
Author(s):  
Benjamin Straube ◽  
Antonia Green ◽  
Susanne Weis ◽  
Anjan Chatterjee ◽  
Tilo Kircher

In human face-to-face communication, the content of speech is often illustrated by coverbal gestures. Behavioral evidence suggests that gestures provide advantages in the comprehension and memory of speech. Yet, how the human brain integrates abstract auditory and visual information into a common representation is not known. Our study investigates the neural basis of memory for bimodal speech and gesture representations. In this fMRI study, 12 participants were presented with video clips showing an actor performing meaningful metaphoric gestures (MG), unrelated, free gestures (FG), and no arm and hand movements (NG) accompanying sentences with an abstract content. After the fMRI session, the participants performed a recognition task. Behaviorally, the participants showed the highest hit rate for sentences accompanied by meaningful metaphoric gestures. Despite comparable old/new discrimination performances (d′) for the three conditions, we obtained distinct memory-related left-hemispheric activations in the inferior frontal gyrus (IFG), the premotor cortex (BA 6), and the middle temporal gyrus (MTG), as well as significant correlations between hippocampal activation and memory performance in the metaphoric gesture condition. In contrast, unrelated speech and gesture information (FG) was processed in areas of the left occipito-temporal and cerebellar region and the right IFG just like the no-gesture condition (NG). We propose that the specific left-lateralized activation pattern for the metaphoric speech–gesture sentences reflects semantic integration of speech and gestures. These results provide novel evidence about the neural integration of abstract speech and gestures as it contributes to subsequent memory performance.


2020 ◽  
Vol 14 ◽  
Author(s):  
Giorgia Committeri ◽  
Agustina Fragueiro ◽  
Maria Maddalena Campanile ◽  
Marco Lagatta ◽  
Ford Burles ◽  
...  

The medial temporal lobe supports both navigation and declarative memory. On this basis, a theory of phylogenetic continuity has been proposed according to which episodic and semantic memories have evolved from egocentric (e.g., path integration) and allocentric (e.g., map-based) navigation in the physical world, respectively. Here, we explored the behavioral significance of this neurophysiological model by investigating the relationship between the performance of healthy individuals on a path integration and an episodic memory task. We investigated the path integration performance through a proprioceptive Triangle Completion Task and assessed episodic memory through a picture recognition task. We evaluated the specificity of the association between performance in these two tasks by including in the study design a verbal semantic memory task. We also controlled for the effect of attention and working memory and tested the robustness of the results by including alternative versions of the path integration and semantic memory tasks. We found a significant positive correlation between the performance on the path integration the episodic, but not semantic, memory tasks. This pattern of correlation was not explained by general cognitive abilities and persisted also when considering a visual path integration task and a non-verbal semantic memory task. Importantly, a cross-validation analysis showed that participants' egocentric navigation abilities reliably predicted episodic memory performance. Altogether, our findings support the hypothesis of a phylogenetic continuity between egocentric navigation and episodic memory and pave the way for future research on the potential causal role of egocentric navigation on multiple forms of episodic memory.


2019 ◽  
Vol 47 (3) ◽  
pp. 1-10
Author(s):  
Kiho Kim ◽  
Yeonsil Lee ◽  
Hui-Teak Kim ◽  
Jang-Han Lee

We investigated the effects of auditory and visual stimuli on pupil dilation induced by emotional arousal during deception. The 33 participants were free to select to be in either a guilty or a not-guilty group. The guilty group performed a theft crime mission, and the not-guilty group performed a legal mission. To detect deception, we measured their pupil diameter with an eye tracker, and they completed the Control Question Test that is typically employed in polygraph tests, and which is based on a comparison of physiological responses to crime-relevant questions and comparison questions. This test was presented via one of three stimuli: auditory, visual, or dual sensory (auditory and visual simultaneously). The findings revealed that the diameter of the pupils of the guilty group increased differently according to the question type when both auditory and visual stimuli were presented simultaneously. Results suggest that pupil dilation could be the deception discriminant, and the use of more than one sensory stimulus may support lie detection in forensic investigations.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Tim Curran ◽  
Hélène Devillez ◽  
Sophie L. YorkWilliams ◽  
L. Cinnamon Bidwell

Abstract The ratio of ∆9-tetrahydrocannabinol (THC) to cannabidiol (CBD) varies widely across cannabis strains. CBD has opposite effects to THC on a variety of cognitive functions, including acute THC-induced memory impairments. However, additional data are needed, especially under naturalistic conditions with higher potency forms of cannabis, commonly available in legal markets. The goal of this study was to collect preliminary data on the acute effects of different THC:CBD ratios on memory testing in a brief verbal recognition task under naturalistic conditions, using legal-market Colorado dispensary products. Thirty-two regular cannabis users consumed cannabis of differing THC and CBD levels purchased from a dispensary and were assessed via blood draw and a verbal recognition memory test both before (pretest) and after (posttest) ad libitum home administration in a mobile laboratory. Memory accuracy decreased as post-use THC blood levels increased (n = 29), whereas performance showed no relationship to CBD blood levels. When controlling for post-use THC blood levels as a covariate, participants using primarily THC-based strains showed significantly worse memory accuracy post-use, whereas subjects using strains containing both THC and CBD showed no differences between pre- and post-use memory performance. Using a brief and sensitive verbal recognition task, our study demonstrated that naturalistic, acute THC use impairs memory in a dose dependent manner, whereas the combination of CBD and THC was not associated with impairment.


2016 ◽  
Vol 283 (1845) ◽  
pp. 20162275 ◽  
Author(s):  
Shu K. E. Tam ◽  
Sibah Hasan ◽  
Steven Hughes ◽  
Mark W. Hankins ◽  
Russell G. Foster ◽  
...  

Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless–coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance.


2004 ◽  
Vol 32 (3) ◽  
pp. 257-274 ◽  
Author(s):  
Amy Wenzel ◽  
Candice Jostad ◽  
Jennifer R. Brendle ◽  
F. Richard Ferraro ◽  
Chad M. Lystad

The present study applied the Deese-Roediger-McDermott false memory paradigm to examine whether anxious and fearful individuals exhibit higher recall and recognition rates of never presented threat words than nonanxious individuals. In Study 1, 39 spider fearful individuals, 28 blood fearful individuals, and 41 nonfearful individuals learned four word lists associated with unpresented target words: “spider”, “blood”, “river”, and “music”. Regardless of whether participants completed only a recognition task or a recall task and then a recognition task, there were no differences as a function of group in the degree to which they falsely remembered unpresented target threat words. In Study 2, 48 socially anxious and 51 nonanxious individuals learned four lists associated with social/evaluative threat unpresented target words and four lists associated with neutral unpresented target words. Similar to the findings from Study 1, groups did not differ in the degree to which they falsely remembered target words. These findings add to an increasingly large literature suggesting that anxious individuals are not characterized by a memory bias toward threat.


Sign in / Sign up

Export Citation Format

Share Document