scholarly journals Acute effects of naturalistic THC vs. CBD use on recognition memory: a preliminary study

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Tim Curran ◽  
Hélène Devillez ◽  
Sophie L. YorkWilliams ◽  
L. Cinnamon Bidwell

Abstract The ratio of ∆9-tetrahydrocannabinol (THC) to cannabidiol (CBD) varies widely across cannabis strains. CBD has opposite effects to THC on a variety of cognitive functions, including acute THC-induced memory impairments. However, additional data are needed, especially under naturalistic conditions with higher potency forms of cannabis, commonly available in legal markets. The goal of this study was to collect preliminary data on the acute effects of different THC:CBD ratios on memory testing in a brief verbal recognition task under naturalistic conditions, using legal-market Colorado dispensary products. Thirty-two regular cannabis users consumed cannabis of differing THC and CBD levels purchased from a dispensary and were assessed via blood draw and a verbal recognition memory test both before (pretest) and after (posttest) ad libitum home administration in a mobile laboratory. Memory accuracy decreased as post-use THC blood levels increased (n = 29), whereas performance showed no relationship to CBD blood levels. When controlling for post-use THC blood levels as a covariate, participants using primarily THC-based strains showed significantly worse memory accuracy post-use, whereas subjects using strains containing both THC and CBD showed no differences between pre- and post-use memory performance. Using a brief and sensitive verbal recognition task, our study demonstrated that naturalistic, acute THC use impairs memory in a dose dependent manner, whereas the combination of CBD and THC was not associated with impairment.

1993 ◽  
Vol 44 (2) ◽  
pp. 191-200 ◽  
Author(s):  
M. Seidenberg ◽  
B. Hermann ◽  
A. Haltiner ◽  
A. Wyler

2016 ◽  
Vol 283 (1845) ◽  
pp. 20162275 ◽  
Author(s):  
Shu K. E. Tam ◽  
Sibah Hasan ◽  
Steven Hughes ◽  
Mark W. Hankins ◽  
Russell G. Foster ◽  
...  

Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless–coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance.


2019 ◽  
Author(s):  
Solange Denervaud ◽  
Edouard Gentaz ◽  
Pawel J Matusz ◽  
Micah M. Murray

The capacity to integrate information from different senses is central for coherent perception across the lifespan from infancy onwards. Later in life, multisensory processes are related to cognitive functions, such as speech or social communication. During learning, multisensory processes can in fact enhance subsequent recognition memory for unisensory objects. These benefits can even be predicted; adults’ recognition memory performance is shaped by earlier responses in the same task to multisensory – but not unisensory – information. Everyday environments where learning occurs, such as classrooms, are inherently multisensory in nature. Multisensory processes may therefore scaffold healthy cognitive development. Here, we provide the first evidence of a predictive relationship between multisensory benefits in simple detection and higher-level cognition that is present already in schoolchildren. Multiple regression analyses indicated that the extent to which a child (N=68; aged 4.5 –15years) exhibited multisensory benefits on a simple detection task not only predicted benefits on a continuous recognition task involving naturalistic objects (p=0.009), even when controlling for age. The same relative multisensory benefit also predicted working memory scores (p=0.023) and fluid intelligence scores (p=0.033) as measured using age-standardised test batteries. By contrast, gains in unisensory detection did not show significant prediction of any of the above global cognition measures. Our findings show that low-level multisensory processes predict higher-order memory and cognition already during childhood, even if still subject to ongoing maturation. These results call for revision of traditional models of cognitive development (and likely also education) to account for the role of multisensory processing, while also opening exciting opportunities to facilitate early learning through multisensory programs. More generally, these data suggest that a simple detection task could provide direct insights into the integrity of global cognition in schoolchildren and could be further developed as a readily-implemented and cost-effective screening tool for neurodevelopmental disorders, particularly in cases when standard neuropsychological tests are infeasible or unavailable.


2021 ◽  
pp. 174702182110590
Author(s):  
Alper Kumcu ◽  
Robin L. Thompson

Previous evidence shows that words with implicit spatial meaning or metaphorical spatial associations are perceptually simulated and can guide attention to associated locations (e.g., bird – upward location). In turn, simulated representations interfere with visual perception at an associated location. The present study investigates the effect of spatial associations on short-term verbal recognition memory to disambiguate between modal and amodal accounts of spatial interference effects across two experiments. Participants in both experiments encoded words presented in congruent and incongruent locations. Congruent and incongruent locations were based on an independent norming task. In Experiment 1, an auditorily presented word probed participants’ memory as they were visually cued to either the original location of the probe word or a diagonal location at retrieval. In Experiment 2, there was no cue at retrieval but a neutral encoding condition in which words normed to central locations were shown. Results show that spatial associations affected memory performance although spatial information was neither relevant nor necessary for successful retrieval: Words in Experiment 1 were retrieved more accurately when there was a visual cue in the congruent location at retrieval but only if they were encoded in a non-canonical position. A visual cue in the congruent location slowed down memory performance when retrieving highly imageable words. With no cue at retrieval (Experiment 2), participants were better at remembering spatially congruent words as opposed to neutral words. Results provide evidence in support of sensorimotor simulation in verbal memory and a perceptual competition account of spatial interference effect.


2020 ◽  
Vol 228 (4) ◽  
pp. 264-277 ◽  
Author(s):  
Evan E. Mitton ◽  
Chris M. Fiacconi

Abstract. To date there has been relatively little research within the domain of metamemory that examines how individuals monitor their performance during memory tests, and whether the outcome of such monitoring informs subsequent memory predictions for novel items. In the current study, we sought to determine whether spontaneous monitoring of test performance can in fact help individuals better appreciate their memory abilities, and in turn shape future judgments of learning (JOLs). Specifically, in two experiments we examined recognition memory for visual images across three study-test cycles, each of which contained novel images. We found that across cycles, participants’ JOLs did in fact increase, reflecting metacognitive sensitivity to near-perfect levels of recognition memory performance. This finding suggests that individuals can and do monitor their test performance in the absence of explicit feedback, and further underscores the important role that test experience can play in shaping metacognitive evaluations of learning and remembering.


2006 ◽  
Vol 25 (5) ◽  
pp. 243-250 ◽  
Author(s):  
M S Allagui ◽  
N Hfaiedh ◽  
C Vincent ◽  
F Guermazi ◽  
J-C Murat ◽  
...  

Lithium therapy, mainly used in curing some psychiatric diseases, is responsible for numerous undesirable side effects. The present study is a contribution to the understanding of the pathophysiological mechanisms underlying lithium toxicity. Male and female mature rats were divided into three batches and fed commercial pellets: one batch was the control and the second and third batches were given 2 g (Li1) and 4 g (Li2) of lithium carbonate/kg of food/day, respectively. After 7, 14, 21 and 28 days, serum levels of free tri-iodothyronine (FT3), thyroxine (FT4), testosterone and estradiol were measured. Attention was also paid to growth rate and a histological examination of testes or vaginal mucosa was carried out. In treated rats, a dose-dependent loss of appetite and a decrease in growth rate were observed, together with symptoms of polydypsia, polyuria and diarrhea. Lithium serum concentrations increased from 0.44 mM (day 7) to 1.34 mM (day 28) in Li1 rats and from 0.66 to 1.45 mM (day 14) in Li2 rats. Li2 treatment induced a high mortality after 14 days, reaching 50-60% in female and male animals. From these data, the LD50 (14 days Li2 chronic treatment) was calculated to be about 0.3 g/day per kilogram of animal, leading to Li serum concentrations of about 1.4 mM. A significant decrease of FT3 and FT4 was observed in treated rats. This effect appeared immediately for the highest dose and was more pronounced for FT3, resulting in an increase of the FT4/FT3 ratio. In males, testosterone decreased and spermatogenesis was stopped. Conversely, in females, estradiol increased in a dose-dependent manner as the animals were blocked in the diestrus phase at day 28. This finding supports a possible antagonistic effect of lithium on the estradiol receptors.


2021 ◽  
Vol 187 ◽  
pp. 108493
Author(s):  
Gerardo Ramirez-Mejia ◽  
Elvi Gil-Lievana ◽  
Oscar Urrego-Morales ◽  
Ernesto Soto-Reyes ◽  
Federico Bermúdez-Rattoni

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ricky Chow ◽  
Alix Noly-Gandon ◽  
Aline Moussard ◽  
Jennifer D. Ryan ◽  
Claude Alain

AbstractListening to autobiographically-salient music (i.e., music evoking personal memories from the past), and transcranial direct current stimulation (tDCS) have each been suggested to temporarily improve older adults’ subsequent performance on memory tasks. Limited research has investigated the effects of combining both tDCS and music listening together on cognition. The present study examined whether anodal tDCS stimulation over the left dorsolateral prefrontal cortex (2 mA, 20 min) with concurrent listening to autobiographically-salient music amplified subsequent changes in working memory and recognition memory in older adults than either tDCS or music listening alone. In a randomized sham-controlled crossover study, 14 healthy older adults (64–81 years) participated in three neurostimulation conditions: tDCS with music listening (tDCS + Music), tDCS in silence (tDCS-only), or sham-tDCS with music listening (Sham + Music), each separated by at least a week. Working memory was assessed pre- and post-stimulation using a digit span task, and recognition memory was assessed post-stimulation using an auditory word recognition task (WRT) during which electroencephalography (EEG) was recorded. Performance on the backwards digit span showed improvement in tDCS + Music, but not in tDCS-only or Sham + Music conditions. Although no differences in behavioural performance were observed in the auditory WRT, changes in neural correlates underlying recognition memory were observed following tDCS + Music compared to Sham + Music. Findings suggest listening to autobiographically-salient music may amplify the effects of tDCS for working memory, and highlight the potential utility of neurostimulation combined with personalized music to improve cognitive performance in the aging population.


2021 ◽  
pp. 174702182110263
Author(s):  
Philippe Blondé ◽  
Marco Sperduti ◽  
Dominique Makowski ◽  
Pascale Piolino

Mind wandering, defined as focusing attention toward task unrelated thoughts, is a common mental state known to impair memory encoding. This phenomenon is closely linked to boredom. Very few studies, however, have tested the potential impact of boredom on memory encoding. Thus, the present study aimed at manipulating mind wandering and boredom during an incidental memory encoding task, to test their differential impact on memory encoding. Thirty-two participants performed a variant of the n-back task in which they had to indicate if the current on-screen object was the same as the previous one (1-back; low working memory load) or the one presented three trials before (3-back; high working memory load). Moreover, thought probes assessing either mind wandering or boredom were randomly presented. Afterward, a surprise recognition task was delivered. Results showed that mind wandering and boredom were highly correlated, and both decreased in the high working memory load condition, while memory performance increased. Although both boredom and mind wandering predicted memory performance taken separately, we found that mind wandering was the only reliable predictor of memory performance when controlling for boredom and working memory load. Model comparisons also revealed that a model with boredom only was outperformed by a model with mind wandering only and a model with both mind wandering and boredom, suggesting that the predictive contribution of boredom in the complete model is minimal. The present results confirm the high correlation between mind wandering and boredom and suggest that the hindering effect of boredom on memory is subordinate to the effect of mind wandering.


Sign in / Sign up

Export Citation Format

Share Document