scholarly journals Unexpected arabinosylation after humanization of plant protein N-glycosylation

2021 ◽  
Author(s):  
Lennard L. Bohlender ◽  
Juliana Parsons ◽  
Sebastian N.W. Hoernstein ◽  
Nina Bangert ◽  
Fernando Rodriguez-Jahnke ◽  
...  

As biopharmaceuticals, recombinant proteins have become indispensable tools in medicine. An increasing demand, not only in quantity but also in diversity, drives the constant development and improvement of production platforms. The N-glycosylation pattern on biopharmaceuticals plays an important role in activity, serum half-life and immunogenicity. Therefore, production platforms with tailored protein N-glycosylation are of great interest. Plant-based systems have already demonstrated their potential to produce pharmaceutically relevant recombinant proteins, although their N-glycan patterns differ from those in humans. Plants have shown great plasticity towards the manipulation of their glycosylation machinery, and some have already been glyco-engineered in order to avoid the attachment of plant-typical, putatively immunogenic sugar residues. This resulted in complex-type N-glycans with a core structure identical to the human one. Compared to humans, plants lack the ability to elongate these N-glycans with β1,4-linked galactoses and terminal sialic acids. However, these modifications, which require the activity of several mammalian enzymes, have already been achieved for Nicotiana benthamiana and the moss Physcomitrella. Here, we present the first step towards sialylation of recombinant glycoproteins in Physcomitrella, human β1,4-linked terminal N-glycan galactosylation, which was achieved by the introduction of a chimeric β1,4-galactosyltransferase (FTGT). This chimeric enzyme consists of the moss α1,4-fucosyltransferase transmembrane domain, fused to the catalytic domain of the human β1,4-galactosyltransferase. Stable FTGT expression led to the desired β1,4-galactosylation. However, additional pentoses of unknown identity were also observed. The nature of these pentoses was subsequently determined by Western blot and enzymatic digestion followed by mass spectrometric analysis and resulted in their identification as α-linked arabinoses. Since a pentosylation of β1,4-galactosylated N-glycans was reported earlier, e.g. on recombinant human erythropoietin produced in glyco-engineered Nicotiana tabacum, this phenomenon is of a more general importance for plant-based production platforms. Arabinoses, which are absent in humans, may prevent the full humanization of plant-derived products. Therefore, the identification of these pentoses as arabinoses is important as it creates the basis for their abolishment to ensure the production of safe biopharmaceuticals in plant-based systems.

2001 ◽  
Vol 114 (24) ◽  
pp. 4629-4635
Author(s):  
Michel J. Massaad ◽  
Annette Herscovics

The α1,2-mannosidase Mns1p involved in the N-glycosidic pathway in Saccharomyces cerevisiae is a type II membrane protein of the endoplasmic reticulum. The localization of Mns1p depends on retrieval from the Golgi through a mechanism that involves Rer1p. A chimera consisting of the transmembrane domain of Mns1p fused to the catalytic domain of the Golgi α1,2-mannosyltransferase Kre2p was localized in the endoplasmic reticulum of Δpep4 cells and in the vacuoles of rer1/Δpep4 by indirect immunofluorescence. The split-ubiquitin system was used to determine if there is an interaction between Mns1p and Rer1p in vivo. Co-expression of NubG-Mns1p and Rer1p-Cub-protein A-lexA-VP16 in L40 yeast cells resulted in cleavage of the reporter molecule, protein A-lexA-VP16, detected by western blot analysis and by expression of β-galactosidase activity. Sec12p, another endoplasmic reticulum protein that depends on Rer1p for its localization, also interacted with Rer1p using the split-ubiquitin assay, whereas the endoplasmic reticulum protein Ost1p showed no interaction. A weak interaction was observed between Alg5p and Rer1p. These results demonstrate that the transmembrane domain of Mns1p is sufficient for Rer1p-dependent endoplasmic reticulum localization and that Mns1p and Rer1p interact. Furthermore, the split-ubiquitin system demonstrates that the C-terminal of Rer1p is in the cytosol.


2003 ◽  
Vol 371 (2) ◽  
pp. 321-330 ◽  
Author(s):  
Rik GIJSBERS ◽  
Hugo CEULEMANS ◽  
Mathieu BOLLEN

The ubiquitous nucleotide pyrophosphatases/phosphodiesterases NPP1–3 consist of a short intracellular N-terminal domain, a single transmembrane domain and a large extracellular part, comprising two somatomedin-B-like domains, a catalytic domain and a poorly defined C-terminal domain. We show here that the C-terminal domain of NPP1–3 is structurally related to a family of DNA/RNA non-specific endonucleases. However, none of the residues that are essential for catalysis by the endonucleases are conserved in NPP1–NPP3, suggesting that the nuclease-like domain of NPP1–3 does not represent a second catalytic domain. Truncation analysis revealed that the nuclease-like domain of NPP1 is required for protein stability, for the targeting of NPP1 to the plasma membrane and for the expression of catalytic activity. We also demonstrate that 16 conserved cysteines in the somatomedin-B-like domains of NPP1, in concert with two flanking cysteines, mediate the dimerization of NPP1. The K173Q polymorphism of NPP1, which maps to the second somatomedin-B-like domain and has been associated with the aetiology of insulin resistance, did not affect the dimerization or catalytic activity of NPP1, and did not endow NPP1 with an affinity for the insulin receptor. Our data suggest that the non-catalytic ectodomains contribute to the subunit structure, stability and function of NPP1–3.


2001 ◽  
Vol 8 (2) ◽  
pp. 133-145 ◽  
Author(s):  
Derek Macmillan ◽  
Roslyn M Bill ◽  
Karen A Sage ◽  
Dominic Fern ◽  
Sabine L Flitsch

1991 ◽  
Vol 5 (2) ◽  
pp. 81-85 ◽  
Author(s):  
A. Tsarbopoulos ◽  
B. N. Pramanik ◽  
P. Reichert ◽  
M. M. Siegel ◽  
T. L. Nagabhushan ◽  
...  

2012 ◽  
Vol 393 (8) ◽  
pp. 777-783 ◽  
Author(s):  
Anselm Werner ◽  
Rüdiger Horstkorte ◽  
Dagobert Glanz ◽  
Karina Biskup ◽  
Véronique Blanchard ◽  
...  

Abstract During the last years, the use of therapeutic glycoproteins has increased strikingly. Glycosylation of recombinant glycoproteins is of major importance in biotechnology, as the glycan composition of recombinant glycoproteins impacts their pharmacological properties. The terminal position of N-linked complex glycans in mammals is typically occupied by sialic acid. The presence of sialic acid is crucial for functionality and affects the half-life of glycoproteins. However, glycoproteins in the bloodstream become desialylated over time and are recognized by the asialoglycoprotein receptors via the exposed galactose and targeted for degradation. Non-natural sialic acid precursors can be used to engineer the glycosylation side chains by biochemically introducing new non-natural terminal sialic acids. Previously, we demonstrated that the physiological precursor of sialic acid (i.e., N-acetylmannosamine) can be substituted by the non-natural precursors N-propanoylmannosamine (ManNProp) or N-pentanoylmannosamine (ManNPent) by their simple application to the cell culture medium. Here, we analyzed the glycosylation of erythropoietin (EPO). By feeding cells with ManNProp or ManNPent, we were able to incorporate N-propanoyl or N-pentanoyl sialic acid in significant amounts into EPO. Using a degradation assay with sialidase, we observed a higher resistance of EPO to sialidase after incorporation of N-propanoyl or N-pentanoyl sialic acid.


2007 ◽  
Vol 409 (2) ◽  
pp. 501-509 ◽  
Author(s):  
Gwanghyun Jung ◽  
Jing Wang ◽  
Pawel Wlodarski ◽  
Barbara Barylko ◽  
Derk D. Binns ◽  
...  

Mammalian cells contain two isoforms of the type II PI4K (phosphoinositol 4-kinase), PI4KIIα and β. These 55 kDa proteins have highly diverse N-terminal regions (approximately residues 1–90) but conserved catalytic domains (approximately from residue 91 to the C-termini). Nearly the entire pool of PI4KIIα behaves as an integral membrane protein, in spite of a lack of a transmembrane domain. This integral association with membranes is due to palmitoylation of a cysteine-rich motif, CCPCC, located within the catalytic domain. Although the CCPCC motif is conserved in PI4KIIβ, only 50% of PI4KIIβ is membrane-associated, and approximately half of this pool is only peripherally attached to the membranes. Growth factor stimulation or overexpression of a constitutively active Rac mutant induces the translocation of a portion of cytosolic PI4KIIβ to plasma membrane ruffles and stimulates its activity. Here, we demonstrate that membrane-associated PI4KIIβ undergoes two modifications, palmitoylation and phosphorylation. The cytosolic pool of PI4KIIβ is not palmitoylated and has much lower lipid kinase activity than the membrane-associated kinase. Although only membrane-associated PI4KIIβ is phosphorylated in the unique N-terminal region, this modification apparently does not influence its membrane binding or activity. A series of truncation mutants and α/β chimaeras were generated to identify regions responsible for the isoform-specific behaviour of the kinases. Surprisingly, the C-terminal approx. 160 residues, and not the diverse N-terminal regions, contain the sites that are most important in determining the different solubilities, palmitoylation states and stimulus-dependent redistributions of PI4KIIα and β.


2012 ◽  
Vol 78 (22) ◽  
pp. 7939-7945 ◽  
Author(s):  
Hitomi Ichinose ◽  
Yuko Araki ◽  
Mari Michikawa ◽  
Koichi Harazono ◽  
Katsuro Yaoi ◽  
...  

ABSTRACTWe cloned two glycoside hydrolase family 74 genes, thesav_1856gene and thesav_2574gene, fromStreptomyces avermitilisNBRC14893 and characterized the resultant recombinant proteins. Thesav_1856gene product (SaGH74A) consisted of a catalytic domain and a family 2 carbohydrate-binding module at the C terminus, while thesav_2574gene product (SaGH74B) consisted of only a catalytic domain. SaGH74A and SaGH74B were expressed successfully and had molecular masses of 92 and 78 kDa, respectively. Both recombinant proteins were xyloglucanases. SaGH74A had optimal activity at 60°C and pH 5.5, while SaGH74B had optimal activity at 55°C and pH 6.0. SaGH74A was stable over a broad pH range (pH 4.5 to 9.0), whereas SaGH74B was stable over a relatively narrow pH range (pH 6.0 to 6.5). Analysis of the hydrolysis products of tamarind xyloglucan and xyloglucan-derived oligosaccharides indicated that SaGH74A was endo-processive, while SaGH74B was a typical endo-enzyme. The C terminus of SaGH74A, which was annotated as a carbohydrate-binding module, bound to β-1,4-linked glucan-containing soluble polysaccharides such as hydroxyethyl cellulose, barley glucan, and xyloglucan.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Keita Kirito ◽  
Koichi Nakajima ◽  
Tomoko Watanabe ◽  
Mie Uchida ◽  
Masaru Tanaka ◽  
...  

Signal transducers and activators of transcription (Stat) proteins play important roles in the regulation of hematopoiesis as downstream molecules of cytokine signal transduction. It was previously demonstrated that erythropoietin (EPO), a major regulator of erythropoiesis, activates 3 different Stat members, Stat1, Stat3, and Stat5, in a human EPO-dependent cell line, UT-7/EPO. To clarify the mechanism by which EPO activates Stat1 and Stat3 via the EPO receptor (EPOR), a series of chimeric receptors was constructed bearing the extracellular domain of the granulocyte colony-stimulating factor receptor linked to the transmembrane domain of EPOR and the full length or several mutants of the cytoplasmic domain of EPOR, and these chimeric receptor complementary DNAs were introduced into UT-7/EPO cells. Tyr432 on human EPOR was important for activation of Stat1 and Stat3 and c-myc gene induction. In addition, Jak2 and Fes tyrosine kinases were involved in EPO-induced activation of Stat1 and Stat3. These results indicate that Stat1 and Stat3 are activated by EPO via distinct mechanisms from Stat5.


1991 ◽  
Vol 115 (6) ◽  
pp. 1521-1534 ◽  
Author(s):  
K W Moremen ◽  
P W Robbins

Golgi alpha-mannosidase II (GlcNAc transferase I-dependent alpha 1,3[alpha 1,6] mannosidase, EC 3.2.1.114) catalyzes the final hydrolytic step in the N-glycan maturation pathway acting as the committed step in the conversion of high mannose to complex type structures. We have isolated overlapping clones from a murine cDNA library encoding the full length alpha-mannosidase II open reading frame and most of the 5' and 3' untranslated region. The coding sequence predicts a type II transmembrane protein with a short cytoplasmic tail (five amino acids), a single transmembrane domain (21 amino acids), and a large COOH-terminal catalytic domain (1,124 amino acids). This domain organization which is shared with the Golgi glycosyl-transferases suggests that the common structural motifs may have a functional role in Golgi enzyme function or localization. Three sets of polyadenylated clones were isolated extending 3' beyond the open reading frame by as much as 2,543 bp. Northern blots suggest that these polyadenylated clones totaling 6.1 kb in length correspond to minor message species smaller than the full length message. The largest and predominant message on Northern blots (7.5 kb) presumably extends another approximately 1.4-kb downstream beyond the longest of the isolated clones. Transient expression of the alpha-mannosidase II cDNA in COS cells resulted in 8-12-fold overexpression of enzyme activity, and the appearance of cross-reactive material in a perinuclear membrane array consistent with a Golgi localization. A region within the catalytic domain of the alpha-mannosidase II open reading frame bears a strong similarity to a corresponding sequence in the rat liver endoplasmic reticulum alpha-mannosidase and the vacuolar alpha-mannosidase of Saccharomyces cerevisiae. Partial human alpha-mannosidase II cDNA clones were also isolated and the gene was localized to human chromosome 5.


Sign in / Sign up

Export Citation Format

Share Document