scholarly journals In situ control of root–bacteria interactions using optical trapping in transparent soil

2021 ◽  
Author(s):  
Sisi Ge ◽  
Kathryn M Wright ◽  
Sonia N Humphris ◽  
Lionel Xavier Dupuy ◽  
Michael P MacDonald

Bacterial attachment on root surfaces is an important step preceding the colonisation or internalisation and subsequent infection of plants by pathogens. Unfortunately, bacterial attachment is not well understood because the phenomenon is difficult to observe. Here we assessed whether this limitation could be overcome using optical trapping approaches. We have developed a system based on counter-propagating beams and studied its ability to guide Pectobacterium atrosepticum (Pba) cells to different root cell types within the interstices of transparent soils. Bacterial cells were successfully trapped and guided to root hair cells, epidermis cells, border cells and tissues damaged by laser ablation. Finally, we used the system to quantify the bacterial cell detachment rate of Pba cells on root surfaces following reversible attachment. Optical trapping techniques could greatly enhance our ability to deterministically characterise mechanisms linked to attachment and formation of biofilms in the rhizosphere.

Development ◽  
1994 ◽  
Vol 120 (9) ◽  
pp. 2465-2474 ◽  
Author(s):  
C. M. Duckett ◽  
C. Grierson ◽  
P. Linstead ◽  
K. Schneider ◽  
E. Lawson ◽  
...  

The development of the post-embryonic root epidermis of Arabidopsis thaliana is described. Clonal analysis has identified three sets of initials that give rise to the columella root cap cells, epidermis and lateral root-cap cells, and the cells of the cortex and endodermis respectively. The mature epidermis is composed of two cell types, root hair cells (derived from trichoblasts) and non- hair cells (derived from atrichoblasts). These cells are arranged in sixteen or more discrete files. Each hair cell file overlies the anticlinal (radial) wall of the underlying cortical cells and is separated from the next by one or two non-hair files. The root hair forms as a tip-growing projection from the basal end of the trichoblast i.e. the end nearest the root meristem. The non-hair epidermal cells are significantly longer than the hair forming cells and are located over the outer periclinal (tangential) wall of the underlying cortical cells. The size difference between the two cell types is apparent in the cell division zone before hairs form. This suggests that the signals required for the differentiation of the root epidermis function in the meristem itself. Ectopic hairs are present in the ctr1 root epidermis suggesting that a Raf protein kinase may play a role in pattern formation/differentiation in the root epidermis and that ethylene may be a diffusible signal involved in specifying pattern in the root epidermis.


Author(s):  
A. Safonov ◽  
N. Andriushchenko ◽  
N. Popova ◽  
K. Boldyrev

Проведен анализ сорбционных характеристик природных материалов (вермикулит, керамзит, перлит, цеолит Трейд ) при очистке кадмий- и хромсодержащих сточных вод с высокой нагрузкой по ХПК. Установлено, что цеолит обладает максимальными сорбционными характеристиками для Cd и Cr и наименьшим биологическим обрастанием. При использовании вермикулита и керамзита или смесей на их основе можно ожидать увеличения сорбционной емкости для Cd и Сr при микробном обрастании, неизбежно происходящем в условиях контакта с водами, загрязненными органическими соединениями и биогенами. При этом биообрастание может повысить иммобилизационную способность материалов для редоксзависимых металлов за счет ферментативных ресурсов бактериальных клеток, использующих их в качестве акцепторов электронов. Эффект микробного обрастания разнонаправленно изменял параметры материалов: для Cr в большинстве случаев уменьшение и для Cd значительное увеличение. При этом дополнительным эффектом иммобилизации Cr является его биологическое восстановление биопленками. Варьируя состав сорбционного материала, можно подбирать смеси, оптимально подходящие для очистки вод инфильтратов с полигонов твердых бытовых отходов с высокой нагрузкой по ХПК и биогенным элементам как при использовании in situ, так и в системах на поверхности.The analysis of the sorption characteristics of natural materials (vermiculite, expanded clay, perlite, Trade zeolite) during the purification of cadmium and chromium-containing leachate with a high COD load was carried out. It was determined that zeolite had the maximum sorption capacity for Cd and Cr and the lowest biological fouling. When using vermiculite and expanded clay or mixtures on their basis, one can expect an increase in the sorption capacity for Cd and Cr during microbial fouling that inevitably occurs during contacting with water polluted with organic compounds and nutrients. In this case biofouling can increase the immobilization properties of materials for redox-dependent metals due to the enzymatic resources of bacterial cells that use them as electron acceptors. The effect of microbial fouling changed the parameters of materials in different directions: for Cr, in most cases, downward, and for Cd, significantly upward. Moreover, chromium biological recovery by biofilms is an additional effect of immobilization. Varying the composition of the sorption material provides for selecting mixtures that are optimally suitable for the purification of leachates from solid waste landfills with high COD and nutrients load, both when used in situ and in surface systems.


Science ◽  
2008 ◽  
Vol 319 (5867) ◽  
pp. 1241-1244 ◽  
Author(s):  
S. Takeda ◽  
C. Gapper ◽  
H. Kaya ◽  
E. Bell ◽  
K. Kuchitsu ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dvir Gur ◽  
Emily J. Bain ◽  
Kory R. Johnson ◽  
Andy J. Aman ◽  
H. Amalia Pasoili ◽  
...  

AbstractSkin color patterns are ubiquitous in nature, impact social behavior, predator avoidance, and protection from ultraviolet irradiation. A leading model system for vertebrate skin patterning is the zebrafish; its alternating blue stripes and yellow interstripes depend on light-reflecting cells called iridophores. It was suggested that the zebrafish’s color pattern arises from a single type of iridophore migrating differentially to stripes and interstripes. However, here we find that iridophores do not migrate between stripes and interstripes but instead differentiate and proliferate in-place, based on their micro-environment. RNA-sequencing analysis further reveals that stripe and interstripe iridophores have different transcriptomic states, while cryogenic-scanning-electron-microscopy and micro-X-ray diffraction identify different crystal-arrays architectures, indicating that stripe and interstripe iridophores are different cell types. Based on these results, we present an alternative model of skin patterning in zebrafish in which distinct iridophore crystallotypes containing specialized, physiologically responsive, organelles arise in stripe and interstripe by in-situ differentiation.


2011 ◽  
Vol 26 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Noriko Ryuda ◽  
Tomoyoshi Hashimoto ◽  
Daisuke Ueno ◽  
Koichi Inoue ◽  
Takashi Someya

1998 ◽  
Vol 88 (6) ◽  
pp. 1111-1115 ◽  
Author(s):  
Kalman Kovacs ◽  
Eva Horvath ◽  
Lucia Stefaneanu ◽  
Juan Bilbao ◽  
William Singer ◽  
...  

✓ The authors report on the morphological features of a pituitary adenoma that produced growth hormone (GH) and adrenocorticotropic hormone (ACTH). This hormone combination produced by a single adenoma is extremely rare; a review of the available literature showed that only one previous case has been published. The tumor, which was removed from a 62-year-old man with acromegaly, was studied by histological and immunocytochemical analyses, transmission electron microscopy, immunoelectron microscopy, and in situ hybridization. When the authors used light microscopy, the tumor appeared to be a bimorphous mixed pituitary adenoma composed of two separate cell types: one cell population synthesized GH and the other ACTH. The cytogenesis of pituitary adenomas that produce more than one hormone is obscure. It may be that two separate cells—one somatotroph and one corticotroph—transformed into neoplastic cells, or that the adenoma arose in a common stem cell that differentiated into two separate cell types. In this case immunoelectron microscopy conclusively demonstrated ACTH in the secretory granules of several somatotrophs. This was associated with a change in the morphological characteristics of secretory granules. Thus it is possible that the tumor was originally a somatotropic adenoma that began to produce ACTH as a result of mutations that occurred during tumor progression.


2017 ◽  
Vol 262 ◽  
pp. 224-227
Author(s):  
Gen Murakami ◽  
Yuichi Sugai ◽  
Kyuro Sasaki

In-situ realtime method that can monitor the target bacteria should be used to determine the real situation of the bacteria in deep parts of heaps in heap bioleaching plants. This study suggest to apply flow cytometry technology to in-situ realtime monitoring of target bacteria. Flow cytometry is a method that can rapidly quantify the bacterial cells in bacterial suspension based on the detection of lights that are emitted from bacterial cells. In this study, we estimated the possibility of the application of flow cytometry to the selective detection of target bacteria. The bacterial culture solution that had been diluted by water including other bacteria was provided for fluorescence spectral analysis and scattered light analysis that were functions of flow cytometry. Our target bacteria could be selectively detected by those analyses in this study, therefore, it was shown that the flow cytometry could be useful for detecting target bacteria selectively. Because the measurement principle of flow cytometry is quite simple, it can be expected to be installed into deep heaps through the monitoring wells and determine the dominance of target bacteria in-situ and realtime in the future.


Sign in / Sign up

Export Citation Format

Share Document