scholarly journals A Deep Learning Approach for NeoAG-Specific Prediction Considering Both HLA-Peptide Binding and Immunogenicity: Finding Neoantigens to Making T-Cell Products More Personal

2021 ◽  
Author(s):  
Xian Xian Liu ◽  
Gloria Li ◽  
Wei Lou ◽  
Juntao Gao ◽  
Simon Fong

[Background]: An emerging type of cancer treatment, known as cell immunotherapy, is gaining popularity over chemotherapy or other radia-tion therapy that causes mass destruction to our body. One favourable ap-proach in cell immunotherapy is the use of neoantigens as targets that help our body immune system identify the cancer cells from healthy cells. Neoan-tigens, which are non-autologous proteins with individual specificity, are generated by non-synonymous mutations in the tumor cell genome. Owing to its strong immunogenicity and lack of expression in normal tissues, it is now an important target for tumor immunotherapy. Neoantigens are some form of special protein fragments excreted as a by-product on the surface of cancer cells during the DNA mutation at the tumour. In cancer immunotherapies, certain neoantigens which exist only on cancer cells elicit our white blood cells (body's defender, anti-cancer T-cell) responses that fight the cancer cells while leaving healthy cells alone. Personalized cancer vaccines there-fore can be designed de novo for each individual patient, when the specific neoantigens are found to be relevant to his/her tumour. The vaccine which is usually coded in synthetic long peptides, RNA or DNA representing the neo-antigens trigger an immune response in the body to destroy the cancer cells (tumour). The specific neoantigens can be found by a complex process of biopsy and genome sequencing. Alternatively, modern technologies nowa-days tap on AI to predict the right neoantigen candidates using algorithms. However, determining the binding and non-binding of neoantigens on T-cell receptors (TCR) is a challenging computational task due to its very large search space. [Objective]: To enhance the efficiency and accuracy of traditional deep learning tools, for serving the same purpose of finding potential responsive-ness to immunotherapy through correctly predicted neoantigens. It is known that deep learning is possible to explore which novel neoantigens bind to T-cell receptors and which ones don't. The exploration may be technically ex-pensive and time-consuming since deep learning is an inherently computa-tional method. one can use putative neoantigen peptide sequences to guide personalized cancer vaccines design. [Methods]: These models all proceed through complex feature engineering, including feature extraction, dimension reduction and so on. In this study, we derived 4 features to facilitate prediction and classification of 4 HLA-peptide binding namely AAC and DC from the global sequence, and the LAAC and LDC from the local sequence information. Based on the patterns of sequence formation, a nested structure of bidirectional long-short term memory neural network called local information module is used to extract context-based features around every residue. Another bilstm network layer called global information module is introduced above local information module layer to integrate context-based features of all residues in the same HLA-peptide binding chain, thereby involving inter-residue relationships in the training process. introduced. [Results]: Finally, a more effective model is obtained by fusing the above two modules and 4 features matric, the method performs significantly better than previous prediction schemes, whose overall r-square increased to 0.0125 and 0.1064 on train and increased to 0.0782 and 0.2926 on test da-tasets. The RMSE for our proposed models trained decreased to approxi-mately 0.0745 and 1.1034, respectively, and decreased to 0.6712 and 1.6506 on test dataset. [Conclusion]: Our work has been actively refining a machine-learning model to improve neoantigen identification and predictions with the determinants for Neoantigen identification. The final experimental results show that our method is more effective than existing methods for predicting peptide types, which can help laboratory researchers to identify the type of novel HLA-peptide binding. Keywords: machine learning; Cancer Cell Immunology; HLA-peptide binding Neoantigen Prediction; HLA; Data Visualization; Novel Neoanti-gen and TCR Pairing Discovery; Vector representation

2019 ◽  
Author(s):  
Ido Springer ◽  
Hanan Besser ◽  
Nili Tickotsky-Moskovitz ◽  
Shirit Dvorkin ◽  
Yoram Louzoun

AbstractCurrent sequencing methods allow for detailed samples of T cell receptors (TCR) repertoires. To determine from a repertoire whether its host had been exposed to a target, computational tools that predict TCR-epitope binding are required. Currents tools are based on conserved motifs and are applied to peptides with many known binding TCRs.Given any TCR and peptide, we employ new NLP-based methods to predict whether they bind. We combined large-scale TCR-peptide dictionaries with deep learning methods to produce ERGO (pEptide tcR matchinG predictiOn), a highly specific and generic TCR-peptide binding predictor.A set of standard tests are defined for the performance of peptide-TCR binding, including the detection of TCRs binding to a given peptide/antigen, choosing among a set of candidate peptides for a given TCR and determining whether any pair of TCR-peptide bind. ERGO significantly outperforms current methods in these tests even when not trained specifically for each test.The software implementation and data sets are available at https://github.com/louzounlab/ERGO


Nanoscale ◽  
2021 ◽  
Author(s):  
William Joseph McDaid ◽  
Nikolai Lissin ◽  
Ellen Pollheimer ◽  
Michelle Greene ◽  
Adam Leach ◽  
...  

For effective targeted therapy of cancer with chemotherapy-loaded nanoparticles (NPs), antigens that are selective for cancer cells should be targeted to minimise off-tumour toxicity. Human leukocyte antigens (HLAs) are an...


Author(s):  
Benjamin J. Solomon ◽  
Paul A. Beavis ◽  
Philip K. Darcy

A common pathway for an effective immune anticancer response involves recognition of tumor neoantigens and subsequent targeting of cancer cells by T cells. In this article, we provide an overview of the current status of two approaches to directly enhance this interaction using either adoptive cell therapy or personalized cancer vaccines with focus on recent advances in solid tumors, including lung cancer.


Biology Open ◽  
2022 ◽  
Author(s):  
Chenxiao Liu ◽  
Karolina Skorupinska-Tudek ◽  
Sven-Göran Eriksson ◽  
Ingela Parmryd

Vγ9Vδ2 T cells is the dominant γδ T cell subset in human blood. They are cytotoxic and activated by phosphoantigens whose concentrations are increased in cancer cells, making the cancer cells targets for Vγ9Vδ2 T cell immunotherapy. For successful immunotherapy, it is important both to characterise Vγ9Vδ2 T cell proliferation and optimise the assessment of their cytotoxic potential, which is the aim of this study. We found that supplementation with freshly-thawed human serum potentiated Vγ9Vδ2 T cell proliferation from peripheral mononuclear cells (PBMCs) stimulated with (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) and consistently enabled Vγ9Vδ2 T cell proliferation from cryopreserved PBMCs. In cryopreserved PBMCs the proliferation was higher than in freshly prepared PBMCs. In a panel of short-chain prenyl alcohols, monophosphates and diphosphates, most diphosphates and also dimethylallyl monophosphate stimulated Vγ9Vδ2 T cell proliferation. We developed a method where the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells is assessed at the single cell level using flow cytometry, which gives more clear-cut results than the traditional bulk release assays. Moreover, we found that HMBPP enhances the Vγ9Vδ2 T cell cytotoxicity towards colon cancer cells. In summary we have developed an easily interpretable method to assess the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells, found that Vγ9Vδ2 T cell proliferation can be potentiated media-supplementation and how misclassification of non-responders may be avoided. Our findings will be useful in the further development of Vγ9Vδ2 T cell immunotherapy.


2019 ◽  
Vol 13 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Synat Kang ◽  
Yanyan Li ◽  
Yifeng Bao ◽  
Yi Li

PLoS ONE ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. e0167017 ◽  
Author(s):  
Sharon M. Barth ◽  
Christian M. Schreitmüller ◽  
Franziska Proehl ◽  
Kathrin Oehl ◽  
Leonie M. Lumpp ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (53) ◽  
pp. 33814-33822
Author(s):  
Qi Feng ◽  
Xiaoyue Yu ◽  
Yixue Wang ◽  
Shiyang Li ◽  
Yang Yang

Tricomponent anti-HER2 vaccine that synthesized by incorporating MFCH401 with Pam3CSK4 and helper T cell epitope could efficiently trigger anti-HER2 antibodies and induce specific recognition and killing to HER2-overexpressing breast cancer cells.


2020 ◽  
Vol 9 (1) ◽  
pp. 1743036 ◽  
Author(s):  
Claudia Arndt ◽  
Liliana R. Loureiro ◽  
Anja Feldmann ◽  
Justyna Jureczek ◽  
Ralf Bergmann ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1049 ◽  
Author(s):  
Anna Lucia Tornesello ◽  
Maria Tagliamonte ◽  
Maria Lina Tornesello ◽  
Franco M. Buonaguro ◽  
Luigi Buonaguro

Nanoparticles represent a potent antigen presentation and delivery system to elicit an optimal immune response by effector cells targeting tumor-associated antigens expressed by cancer cells. Many types of nanoparticles have been developed, such as polymeric complexes, liposomes, micelles and protein-based structures such as virus like particles. All of them show promising results for immunotherapy approaches. In particular, the immunogenicity of peptide-based cancer vaccines can be significantly potentiated by nanoparticles. Indeed, nanoparticles are able to enhance the targeting of antigen-presenting cells (APCs) and trigger cytokine production for optimal T cell response. The present review summarizes the categories of nanoparticles and peptide cancer vaccines which are currently under pre-clinical evaluation.


Sign in / Sign up

Export Citation Format

Share Document