scholarly journals Elevated ozone concentration and nitrogen addition increase poplar rust severity by shifting the phyllosphere microbial community

2021 ◽  
Author(s):  
Siqi Tao ◽  
Yunxia Zhang ◽  
Chengming Tian ◽  
Sébastien Duplessis ◽  
Naili Zhang

The tropospheric ozone and nitrogen deposition are two major environmental pollutants. Numerous studies have focused on the negative impacts of elevated O3 and the complementary effect of soil N addition to tree physiological characteristics. However, it was notoriously ignored of how elevated O3 with N addition affect tree immunity in face of pathogen infection, as well as of the important roles of phyllosphere microbiome community in host-pathogen-environment interplay. Here, we examined the effects of elevated O3 and soil N addition on poplar leaf rust (Melampsora larici-populina) severity of two susceptible hybrid poplars (clone ‘107’: Populus euramericana cv. ‘74/76’; clone ‘546’: P. deltoides × P. cathayana) in Free-Air-Controlled-Environment plots, besides, the link between Mlp-susceptibility and changes in microbial community was determined using Miseq amplicon sequencing. Rust severity of clone ‘107’ significantly increased under elevated O3 or N addition only, however, the negative impact of elevated O3 could be significantly alleviated when simultaneously conducting N addition, likewise, this trade-off was also found in its phyllosphere microbial α-diversity responding to elevated O3 and N addition. However, the rust severity of clone ‘546’ did not significantly differ in the cases of elevated O3 and N addition. Mlp-infection altered microbial community composition and increased its sensitivity to elevated O3 assessed by significantly different abundance of taxa. Elevated O3 and N addition reduced the complexity of microbial community, which may explain the increased severity of poplar rust. These findings demonstrated that poplars need shifting phyllosphere microbial associations to optimize plant immunity in response to environmental changes.

2021 ◽  
Vol 11 ◽  
Author(s):  
Janneke Schreuder ◽  
Francisca C. Velkers ◽  
Alex Bossers ◽  
Ruth J. Bouwstra ◽  
Willem F. de Boer ◽  
...  

Associations between animal health and performance, and the host’s microbiota have been recently established. In poultry, changes in the intestinal microbiota have been linked to housing conditions and host development, but how the intestinal microbiota respond to environmental changes under farm conditions is less well understood. To gain insight into the microbial responses following a change in the host’s immediate environment, we monitored four indoor flocks of adult laying chickens three times over 16 weeks, during which two flocks were given access to an outdoor range, and two were kept indoors. To assess changes in the chickens’ microbiota over time, we collected cloacal swabs of 10 hens per flock and performed 16S rRNA gene amplicon sequencing. The poultry house (i.e., the stable in which flocks were housed) and sampling time explained 9.2 and 4.4% of the variation in the microbial community composition of the flocks, respectively. Remarkably, access to an outdoor range had no detectable effect on microbial community composition, the variability of microbiota among chickens of the same flock, or microbiota richness, but the microbiota of outdoor flocks became more even over time. Fluctuations in the composition of the microbiota over time within each poultry house were mainly driven by turnover in rare, rather than dominant, taxa and were unique for each flock. We identified 16 amplicon sequence variants that were differentially abundant over time between indoor and outdoor housed chickens, however none were consistently higher or lower across all chickens of one housing type over time. Our study shows that cloacal microbiota community composition in adult layers is stable following a sudden change in environment, and that temporal fluctuations are unique to each flock. By exploring microbiota of adult poultry flocks within commercial settings, our study sheds light on how the chickens’ immediate environment affects the microbiota composition.


2020 ◽  
Author(s):  
xia ding ◽  
Xiaojue Peng ◽  
Zhichao Chen ◽  
Yingjie Li ◽  
Lihui Mao ◽  
...  

Abstract Background Drought is a global environmental stress that limits crop yields. Microbial communities control many biogeochemical processes, and a predictive understanding of how crop microbial communities assemble in response to drought stress is central to addressing the challenges caused by drought. Little is known about the microbiome assembly processes in rice-ecosystems, particularly with regard to their environmental adaptation. Wild rice may serve as a source of superior drought tolerance candidate for rice breeding. There is an urgent need to explore wild rice resistance mechanisms to drought stress. Here, we evaluated the effect of drought stress on the microbial community recruitment and assembly in the endosphere (leaf, stem, and root) and rhizosphere of Oryza longistaminata. Results Species replacement was the dominant process shaping microbial community composition under drought stress. O. longistaminata recruited the phyla Actinobacteria and Fusobacteria, the genus Streptomyces, and phototrophic prokaryotes to improve its fitness. The host exerted strong effects on microbiome assembly, and the responses of the microbial community structure to the drought environment showed above- and belowground patterns. Drought reduced taxonomic α-diversity and destabilized co-occurrence network properties in the leaves and stems, but not in the roots and rhizosphere. Drought promoted the restructuring and strengthening of belowground network links to more strongly interconnect network properties. The drought response of the microbiome was phylogenetically conserved. Stochastic (neutral) processes acted on microbial community reassembly in response to drought stress across all four compartments. Conclusions Our results provide new insight into the mechanisms through which drought alters microbial community assembly in drought-tolerant wild rice and reveal a potential strategy for manipulating plant microbiomes to improve crop fitness.


2021 ◽  
Author(s):  
Runji Zhang ◽  
Xianrui Tian ◽  
Quanju Xiang ◽  
Petri Penttinen ◽  
Yunfu Gu

Abstract Background: Altitude affects biodiversity and physic-chemical properties of soil, providing natural sites for studying species distribution and the response of biota to environmental changes. We sampled soil at three altitudes in an arid valley, determined the physic-chemical characteristics and microbial community composition in the soils, identified differentially abundant taxa and the relationships between community composition and environmental factors. Results: The low, medium and high altitudes were roughly separated based on the physic-chemical characteristics and clearly separated based on the microbial community composition. The differences in community composition were associated with differences in all measured factors except pH. The contents of organic and microbial biomass C, total and available N and available P, and the richness and diversity of the microbial communities were lowest in the medium altitude. The relative abundances of phyla Proteobacteria, Gemmatimonadetes, Actinobacteria and Acidobacteria were high at all altitudes. The differentially abundant ASVs were mostly assigned to Proteobacteria and Acidobacteria. The highest number of ASVs characterizing altitude were detected in the high altitude. However, the predicted functions of the communities were overlapping, suggesting that the contribution of the communities to soil processes changed relatively little along the altitude gradient. Conclusions: The composition of microbial community at different altitudes was related to the differences of all measuring factors except pH in arid valley in Panzhihua, China.


2021 ◽  
Author(s):  
Qian Guo ◽  
Zhongming Wen ◽  
Hossein Ghanizadeh ◽  
Cheng Zheng ◽  
Yongming Fan ◽  
...  

Abstract Aims Nitrogen (N) deposition is a global environmental problem that can alter community compositions and functions, and consequently, the ecosystem services. In this study, we assessed the responses of aboveground vegetation, surface soil properties and microbial communities to N addition, and explored the drivers of microbial community in a semiarid steppe ecosystem in northwest of China. Methods Thirty-six 6×10-m2 plots composed of six N addition levels and six replicates were distributed in six columns and six rows. Nine vegetation characteristics and seven soil properties were measured and calculated. Soil microbial characteristics were analyzed by 16S rRNA high-throughput sequencing. Results N addition positively affected aboveground vegetation traits such as the community weighted-mean of leaf nitrogen content (LNCWM). High N inputs significantly altered the microbial community assembly process from random to deterministic. The microbial community diversity and composition, however, were not sensitive to N addition. A piecewise structural equation model (SEM) further showed that the microbial community composition was affected by both aboveground vegetation and soil properties. The composition of bacterial communities was mainly regulated by the composition of plant communities and soil total N. In contrast, the composition of fungal communities was driven by soil pH and the community weighted-mean of specific leaf area (SLACWM). Microbial diversity and composition remained unchanged because their drivers were not affected by N addition. The results of this research improved our understanding of the response of grassland ecosystems to N deposition, and provided a theoretical basis for grassland utilization and management under N deposition.


2020 ◽  
Author(s):  
Christina Nikolova ◽  
Umer Zeeshan Ijaz ◽  
Clayton Magill ◽  
Sara Kleindienst ◽  
Samantha B. Joye ◽  
...  

AbstractBackgroundAlthough synthetic dispersants are effective in dispersing crude oil, they can alter the natural microbial response to oil and potentially hinder its biodegradation. Biosurfactants, however, are naturally derived products that play a similar role to synthetic dispersants in oil spill response but are easily biodegradable and less toxic. This study investigated the microbial community dynamics, ecological drivers, functional diversity, and oil biodegradation potential of a northeast Atlantic marine microbial community to crude oil when exposed to rhamnolipid or synthetic dispersant Finasol OSR52.ResultsWe found the microbial community composition and diversity were markedly different in the rhamnolipid-amended treatment compared to that with Finasol, with key aromatic hydrocarbon-degrading bacteria like Cycloclasticus being suppressed in the Finasol treatment but not in oil-only and rhamnolipid-amended treatments. Psychrophilic Colwellia and Oleispira dominated the community in both the rhamnolipid and Finasol OSR52 treatments initially but later community structure across treatments diverged significantly: Rhodobacteraceae and Vibrio dominated the Finasol-amended treatment and Colwellia, Oleispira, and later Cycloclasticus and Alcanivorax, dominated the rhamnolipid-amended treatment. Vibrio abundance increased substantially in treatments receiving Finasol, suggesting a potentially important role for these organisms in degrading dispersant components. In fact, Finasol was linked with a negative impact on alpha diversity. Deterministic environmental filtering played a dominant role in regulating the community assembly in all treatments but was strongest in the dispersant-amended treatments. Rhamnolipid-amended and oil-only treatments had the highest functional diversity, however, the overall oil biodegradation was greater in the Finasol treatment, but aromatic biodegradation was highest in the rhamnolipid treatment.ConclusionOverall, the natural marine microbial community in the northeast Atlantic responded differently to crude oil dispersed with either synthetic or biogenic surfactants over time, but oil degradation was more enhanced by the synthetic dispersant. Collectively, our results advance the understanding of how rhamnolipid biosurfactants affect the natural marine microbial community, supporting their potential application in oil spills.


2001 ◽  
Vol 1 ◽  
pp. 500-504 ◽  
Author(s):  
Teri C. Balser

We evaluated the microbial communities in three Hawaiian forest soils along a natural fertility gradient and compared their distinct responses to long-term nitrogen (N) additions. The sites studied have the same elevation, climate, and dominant vegetation, but vary in age of development, and thus in soil nutrient availability and nutrient limitation to plant growth. Fertilized plots at each site have received 100 kg ha year-1N addition for at least 8 years. Soil parameters, water content, pH, and ammonium and nitrate availability differed by site, but not between control and N-addition treatments within a site at the time of sampling. Microbial biomass also varied by site, but was not affected by N addition. In contrast, microbial community composition (measured by phospholipid analysis) varied among sites and between control and N-addition plots within a site. These data suggest that microbial community composition responds to N addition even when plant net primary productivity is limited by nutrients other than N. This may have implications for the behavior of forests impacted by atmospheric N deposition that are considered to be “nitrogen saturated,” yet still retain N in the soil.


2019 ◽  
Vol 1 (1) ◽  
pp. 112-128 ◽  
Author(s):  
Jiwen Liu ◽  
Zhe Meng ◽  
Xiaoyue Liu ◽  
Xiao-Hua Zhang

Abstract Microorganisms play crucial roles in maintaining ecosystem stability. The last two decades have witnessed an upsurge in studies on marine microbial community composition using high-throughput sequencing methods. Extensive mining of the compositional data has provided exciting new insights into marine microbial ecology from a number of perspectives. Both deterministic and stochastic processes contribute to microbial community assembly but their relative importance in structuring subcommunities, that are categorized by traits such as abundance, functional type and activity, differs. Through correlation-based network analysis, significant progress has been made in unraveling microbial co-occurrence patterns and dynamics in response to environmental changes. Prediction of ecosystem functioning, based on microbial data, is receiving increasing attention, as closely related microbes often share similar ecological traits and microbial diversity often exhibits significant correlations to ecosystem functioning. The ecosystem functioning is likely executed not by the whole community, but rather by an active fraction of a community, which can be inferred from the marker gene transcription level of community members. Furthermore, the huge amount of microbial community data has significantly expanded the tree of life and illuminated microbial phylogenetic divergence and evolutionary history. This review summarizes important findings in microbial assembly, interaction, functioning, activity and diversification, highlighting the interacting roles of different aspects, derived from community compositional data.


2021 ◽  
Vol 12 ◽  
Author(s):  
Simona Bartkova ◽  
Anne Kahru ◽  
Margit Heinlaan ◽  
Ott Scheler

Antimicrobial resistance (AMR) is a global health threat. Antibiotics, heavy metals, and microplastics are environmental pollutants that together potentially have a positive synergetic effect on the development, persistence, transport, and ecology of antibiotic resistant bacteria in the environment. To evaluate this, a wide array of experimental methods would be needed to quantify the occurrence of antibiotics, heavy metals, and microplastics as well as associated microbial communities in the natural environment. In this mini-review, we outline the current technologies used to characterize microplastics based ecosystems termed “plastisphere” and their AMR promoting elements (antibiotics, heavy metals, and microbial inhabitants) and highlight emerging technologies that could be useful for systems-level investigations of AMR in the plastisphere.


2016 ◽  
Author(s):  
Christian Wurzbacher ◽  
Andrea Fuchs ◽  
Katrin Attermeyer ◽  
Katharina Frindte ◽  
Hans-Peter Grossart ◽  
...  

AbstractSediments are depositional areas where particles sink from water columns, but they are also microbial hotspots that play an important role in biogeochemical cycles. Unfortunately, the importance of both processes in structuring microbial community composition has not been assessed. We surveyed all organismic signals of the last ca. 170 years of sediment by metabarcoding, identifying global trends for eukaryotes, bacteria, archaea, and monitored 40 sediment parameters. We linked the microbial community structure to ongoing and historical environmental parameters and defined three distinct sediment horizons. This not only expands our knowledge of freshwater sediments, but also has profound implications for understanding the microbial community structure and function of sediment communities in relation to future, present, and past environmental changes.


Sign in / Sign up

Export Citation Format

Share Document