scholarly journals Oligomerization of peripheral membrane proteins provides tunable control of cell surface polarity

2022 ◽  
Author(s):  
Charles F Lang ◽  
Edwin Munro

Asymmetric distributions of peripheral membrane proteins define cell polarity across all kingdoms of life. These asymmetries are shaped by membrane binding, diffusion and transport. Theoretical studies have revealed a general requirement for non-linear positive feedback to spontaneously amplify and/or stabilize asymmetries against dispersion by diffusion and dissociation. But how specific molecular sources of non-linearity shape polarization dynamics remains poorly understood. Here we study how oligomerization of peripheral membrane proteins shapes polarization dynamics in simple feedback circuits. We show that size dependent binding avidity and mobility of membrane bound oligomers endow polarity circuits generically with several key properties. Size-dependent binding avidity confers a form of positive feedback in which the effective rate constant for subunit dissociation decreases with increasing subunit density. This combined with additional weak linear positive feedback is sufficient for spontaneous emergence of stably polarized states. Size-dependent oligomer mobility makes symmetry-breaking and stable polarity more robust with respect to variation in subunit diffusivities and cell sizes, and slows the approach to a final stable spatial distribution, allowing cells to "remember" polarity boundaries imposed by transient external cues. Together, these findings reveal how oligomerization of peripheral membrane proteins can provide powerful and highly tunable sources of non-linear feedback in biochemical circuits that govern cell-surface polarity. Given its prevalence and widespread involvement in cell polarity, we speculate that self-oligomerization may have provided an accessible path to evolving simple polarity circuits.

1992 ◽  
Vol 116 (4) ◽  
pp. 889-899 ◽  
Author(s):  
D A Wollner ◽  
K A Krzeminski ◽  
W J Nelson

The development of polarized epithelial cells from unpolarized precursor cells follows induction of cell-cell contacts and requires resorting of proteins into different membrane domains. We show that in MDCK cells the distributions of two membrane proteins, Dg-1 and E-cadherin, become restricted to the basal-lateral membrane domain within 8 h of cell-cell contact. During this time, however, 60-80% of newly synthesized Dg-1 and E-cadherin is delivered directly to the forming apical membrane and then rapidly removed, while the remainder is delivered to the basal-lateral membrane and has a longer residence time. Direct delivery of greater than 95% of these proteins from the Golgi complex to the basal-lateral membrane occurs greater than 48 h later. In contrast, we show that two apical proteins are efficiently delivered and restricted to the apical cell surface within 2 h after cell-cell contact. These results provide insight into mechanisms involved in the development of epithelial cell surface polarity, and the establishment of protein sorting pathways in polarized cells.


1994 ◽  
Vol 267 (2) ◽  
pp. C473-C481 ◽  
Author(s):  
A. Z. Wang ◽  
J. C. Wang ◽  
G. K. Ojakian ◽  
W. J. Nelson

Madin-Darby canine kidney epithelial cells form three-dimensional cysts in spinner culture with a defined cell surface polarity. Transfer of cysts from spinner culture to a collagen gel matrix results in rapid loss of apical membrane proteins from the outside surface of the cyst, degradation of extracellular matrix (ECM) from the cyst lumen, and de novo formation of the apical membrane at the luminal surface. Degradation of endogenous ECM was inhibited with 1,10-phenanthroline, an inhibitor of metalloproteinases, resulting in cysts in which cells are surrounded by either cell-cell or cell-substratum contacts. The consequence of the lack of a free cell surface on the formation of a new apical membrane domain in these cysts was analyzed. Changes in cell surface polarity were followed with antibodies to marker proteins of the apical or basolateral membranes. In the absence of a free cell surface, the apical membrane formed de novo by accumulation and fusion of presorted vesicles containing apical membrane proteins; the coalescence of these vesicles results in the formation of a central lumen. These results provide novel insights into the generation of membrane domains and formation of a lumen in complex, three-dimensional epithelial structures in development.


1995 ◽  
Vol 130 (5) ◽  
pp. 1105-1115 ◽  
Author(s):  
R W Mays ◽  
K A Siemers ◽  
B A Fritz ◽  
A W Lowe ◽  
G van Meer ◽  
...  

We have studied mechanisms involved in generating a polarized distribution of Na/K-ATPase in the basal-lateral membrane of two clones of MDCK II cells. Both clones exhibit polarized distributions of marker proteins of the apical and basal-lateral membranes, including Na/K-ATPase, at steady state. Newly synthesized Na/K-ATPase, however, is delivered from the Golgi complex to both apical and basal-lateral membranes of one clone (II/J), and to the basal-lateral membrane of the other clone (II/G); Na/K-ATPase is selectively retained in the basal-lateral membrane resulting in the generation of complete cell surface polarity in both clones. Another basal-lateral membrane protein, E-cadherin, is sorted to the basal-lateral membrane in both MDCK clones, demonstrating that there is not a general sorting defect for basal-lateral membrane proteins in clone II/J cells. A glycosyl-phosphatidylinositol (GPI)-anchored protein (GP-2) and a glycosphingolipid (glucosylceramide, GlcCer) are preferentially transported to the apical membrane in clone II/G cells, but, in clone II/J cells, GP-2 and GlcCer are delivered equally to both apical and basal-lateral membranes, similar to Na/K-ATPase. To examine this apparent inter-relationship between sorting of GlcCer, GP-2 and Na/K-ATPase, sphingolipid synthesis was inhibited in clone II/G cells with the fungal metabolite, Fumonisin B1 (FB1). In the presence of FB1, GP-2 and Na/K-ATPase are delivered to both apical and basal-lateral membranes, similar to clone II/J cells; FB1 had no effect on sorting of E-cadherin to the basal-lateral membrane of II/G cells. Addition of exogenous ceramide, to circumvent the FB1 block, restored GP-2 and Na/K-ATPase sorting to the apical and basal-lateral membranes, respectively. These results show that the generation of complete cell surface polarity of Na/K-ATPase involves a hierarchy of sorting mechanisms in the Golgi complex and plasma membrane, and that Na/K-ATPase sorting in the Golgi complex of MDCK cells may be regulated by exclusion from an apical pathway(s). These results also provide new insights into sorting pathways for other apical and basal-lateral membrane proteins.


1999 ◽  
Vol 79 (1) ◽  
pp. 73-98 ◽  
Author(s):  
CHARLES YEAMAN ◽  
KENT K. GRINDSTAFF ◽  
W. JAMES NELSON

Yeaman, Charles, Kent K. Grindstaff, and W. James Nelson. New Perspectives on Mechanisms Involved in Generating Epithelial Cell Polarity. Physiol. Rev. 79: 73–98, 1999. — Polarized epithelial cells form barriers that separate biological compartments and regulate homeostasis by controlling ion and solute transport between those compartments. Receptors, ion transporters and channels, signal transduction proteins, and cytoskeletal proteins are organized into functionally and structurally distinct domains of the cell surface, termed apical and basolateral, that face these different compartments. This review is about mechanisms involved in the establishment and maintenance of cell polarity. Previous reports and reviews have adopted a Golgi-centric view of how epithelial cell polarity is established, in which the sorting of apical and basolateral membrane proteins in the Golgi complex is a specialized process in polarized cells, and the generation of cell surface polarity is a direct consequence of this process. Here, we argue that events at the cell surface are fundamental to the generation of cell polarity. We propose that the establishment of structural asymmetry in the plasma membrane is the first, critical event, and subsequently, this asymmetry is reinforced and maintained by delivery of proteins that were constitutively sorted in the Golgi. We propose a hierarchy of stages for establishing cell polarity.


Physchem ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 152-162
Author(s):  
Miquel Pons

A large number of peripheral membrane proteins transiently interact with lipids through a combination of weak interactions. Among them, electrostatic interactions of clusters of positively charged amino acid residues with negatively charged lipids play an important role. Clusters of charged residues are often found in intrinsically disordered protein regions, which are highly abundant in the vicinity of the membrane forming what has been called the disordered boundary of the cell. Beyond contributing to the stability of the lipid-bound state, the pattern of charged residues may encode specific interactions or properties that form the basis of cell signaling. The element of this code may include, among others, the recognition, clustering, and selective release of phosphatidyl inositides, lipid-mediated protein-protein interactions changing the residence time of the peripheral membrane proteins or driving their approximation to integral membrane proteins. Boundary effects include reduction of dimensionality, protein reorientation, biassing of the conformational ensemble of disordered regions or enhanced 2D diffusion in the peri-membrane region enabled by the fuzzy character of the electrostatic interactions with an extended lipid membrane.


2001 ◽  
Vol 152 (6) ◽  
pp. 1183-1196 ◽  
Author(s):  
Atsushi Suzuki ◽  
Tomoyuki Yamanaka ◽  
Tomonori Hirose ◽  
Naoyuki Manabe ◽  
Keiko Mizuno ◽  
...  

We have previously shown that during early Caenorhabditis elegans embryogenesis PKC-3, a C. elegans atypical PKC (aPKC), plays critical roles in the establishment of cell polarity required for subsequent asymmetric cleavage by interacting with PAR-3 [Tabuse, Y., Y. Izumi, F. Piano, K.J. Kemphues, J. Miwa, and S. Ohno. 1998. Development (Camb.). 125:3607–3614]. Together with the fact that aPKC and a mammalian PAR-3 homologue, aPKC-specific interacting protein (ASIP), colocalize at the tight junctions of polarized epithelial cells (Izumi, Y., H. Hirose, Y. Tamai, S.-I. Hirai, Y. Nagashima, T. Fujimoto, Y. Tabuse, K.J. Kemphues, and S. Ohno. 1998. J. Cell Biol. 143:95–106), this suggests a ubiquitous role for aPKC in establishing cell polarity in multicellular organisms. Here, we show that the overexpression of a dominant-negative mutant of aPKC (aPKCkn) in MDCK II cells causes mislocalization of ASIP/PAR-3. Immunocytochemical analyses, as well as measurements of paracellular diffusion of ions or nonionic solutes, demonstrate that the biogenesis of the tight junction structure itself is severely affected in aPKCkn-expressing cells. Furthermore, these cells show increased interdomain diffusion of fluorescent lipid and disruption of the polarized distribution of Na+,K+-ATPase, suggesting that epithelial cell surface polarity is severely impaired in these cells. On the other hand, we also found that aPKC associates not only with ASIP/PAR-3, but also with a mammalian homologue of C. elegans PAR-6 (mPAR-6), and thereby mediates the formation of an aPKC-ASIP/PAR-3–PAR-6 ternary complex that localizes to the apical junctional region of MDCK cells. These results indicate that aPKC is involved in the evolutionarily conserved PAR protein complex, and plays critical roles in the development of the junctional structures and apico-basal polarization of mammalian epithelial cells.


Open Biology ◽  
2011 ◽  
Vol 1 (3) ◽  
pp. 110010 ◽  
Author(s):  
Clive Metcalfe ◽  
Peter Cresswell ◽  
Laura Ciaccia ◽  
Benjamin Thomas ◽  
A. Neil Barclay

Redox conditions change in events such as immune and platelet activation, and during viral infection, but the biochemical consequences are not well characterized. There is evidence that some disulfide bonds in membrane proteins are labile while others that are probably structurally important are not exposed at the protein surface. We have developed a proteomic/mass spectrometry method to screen for and identify non-structural, redox-labile disulfide bonds in leucocyte cell-surface proteins. These labile disulfide bonds are common, with several classes of proteins being identified and around 30 membrane proteins regularly identified under different reducing conditions including using enzymes such as thioredoxin. The proteins identified include integrins, receptors, transporters and cell–cell recognition proteins. In many cases, at least one cysteine residue was identified by mass spectrometry as being modified by the reduction process. In some cases, functional changes are predicted (e.g. in integrins and cytokine receptors) but the scale of molecular changes in membrane proteins observed suggests that widespread effects are likely on many different types of proteins including enzymes, adhesion proteins and transporters. The results imply that membrane protein activity is being modulated by a ‘redox regulator’ mechanism.


Sign in / Sign up

Export Citation Format

Share Document