scholarly journals Foveal vision predictively sensitizes to defining features of eye movement targets

2022 ◽  
Author(s):  
Lisa M Kroell ◽  
Martin Rolfs

Despite the fovea's singular importance for active human vision, the impact of large eye movements on foveal processing remains elusive. Building on findings from passive fixation tasks, we hypothesized that during the preparation of rapid eye movements (saccades), foveal processing anticipates soon-to-be fixated visual features. Using a dynamic large-field noise paradigm, we indeed demonstrate that sensitivity for defining features of a saccade target is enhanced in the pre-saccadic center of gaze. Enhancement manifested in higher Hit Rates for foveal probes with target-congruent orientation, and a sensitization to incidental, target-like orientation information in foveally presented noise. Enhancement was spatially confined to the center of gaze and its immediate vicinity. We suggest a crucial contribution of foveal processing to trans-saccadic visual continuity which has previously been overlooked: Foveal processing of saccade targets commences before the movement is executed and thereby enables a seamless transition once the center of gaze reaches the target.

Author(s):  
Christian Wolf ◽  
Markus Lappe

AbstractHumans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.


2020 ◽  
Vol 117 (20) ◽  
pp. 11178-11183
Author(s):  
Natalya Shelchkova ◽  
Martina Poletti

It is known that attention shifts prior to a saccade to start processing the saccade target before it lands in the foveola, the high-resolution region of the retina. Yet, once the target is foveated, microsaccades, tiny saccades maintaining the fixated object within the fovea, continue to occur. What is the link between these eye movements and attention? There is growing evidence that these eye movements are associated with covert shifts of attention in the visual periphery, when the attended stimuli are presented far from the center of gaze. Yet, microsaccades are primarily used to explore complex foveal stimuli and to optimize fine spatial vision in the foveola, suggesting that the influences of microsaccades on attention may predominantly impact vision at this scale. To address this question we tracked gaze position with high precision and briefly presented high-acuity stimuli at predefined foveal locations right before microsaccade execution. Our results show that visual discrimination changes prior to microsaccade onset. An enhancement occurs at the microsaccade target location. This modulation is highly selective and it is coupled with a drastic impairment at the opposite foveal location, just a few arcminutes away. This effect is strongest when stimuli are presented closer to the eye movement onset time. These findings reveal that the link between attention and microsaccades is deeper than previously thought, exerting its strongest effects within the foveola. As a result, during fixation, foveal vision is constantly being reshaped both in space and in time with the occurrence of microsaccades.


2012 ◽  
Vol 5 (4) ◽  
Author(s):  
Antoine Coutrot ◽  
Nathalie Guyader ◽  
Gelu Ionescu ◽  
Alice Caplier

Models of visual attention rely on visual features such as orientation, intensity or motion to predict which regions of complex scenes attract the gaze of observers. So far, sound has never been considered as a possible feature that might influence eye movements. Here, we evaluate the impact of non-spatial sound on the eye movements of observers watching videos. We recorded eye movements of 40 participants watching assorted videos with and without their related soundtracks. We found that sound impacts on eye position, fixation duration and saccade amplitude. The effect of sound is not constant across time but becomes significant around one second after the beginning of video shots.


Author(s):  
Loïc Caroux ◽  
Ludovic Le Bigot ◽  
Nicolas Vibert

In many visual displays such as virtual environments, human tasks involve objects superimposed on both complex and moving backgrounds. However, most studies investigated the influence of background complexity or background motion in isolation. Two experiments were designed to investigate the joint influences of background complexity and lateral motion on a simple shooting task typical of video games. Participants had to perform the task on the moving and static versions of backgrounds of three levels of complexity, while their eye movements were recorded. The backgrounds displayed either an abstract (Experiment 1) or a naturalistic (Experiment 2) virtual environment. The results showed that performance was impaired by background motion in both experiments. The effects of motion and complexity were additive for the abstract background and multiplicative for the naturalistic background. Eye movement recordings showed that performance impairments reflected at least in part the impact of the background visual features on gaze control.


2011 ◽  
Vol 70 ◽  
pp. 352-352 ◽  
Author(s):  
K Strand Brodd ◽  
K Rosander ◽  
H Grönqvist ◽  
G Holmström ◽  
B Strömberg ◽  
...  

2009 ◽  
Vol 101 (6) ◽  
pp. 2889-2897 ◽  
Author(s):  
Andre Kaminiarz ◽  
Kerstin Königs ◽  
Frank Bremmer

Different types of fast eye movements, including saccades and fast phases of optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN), are coded by only partially overlapping neural networks. This is a likely cause for the differences that have been reported for the dynamic parameters of fast eye movements. The dependence of two of these parameters—peak velocity and duration—on saccadic amplitude has been termed “main sequence.” The main sequence of OKAN fast phases has not yet been analyzed. These eye movements are unique in that they are generated by purely subcortical control mechanisms and that they occur in complete darkness. In this study, we recorded fast phases of OKAN and OKN as well as visually guided and spontaneous saccades under identical background conditions because background characteristics have been reported to influence the main sequence of saccades. Our data clearly show that fast phases of OKAN and OKN differ with respect to their main sequence. OKAN fast phases were characterized by their lower peak velocities and longer durations compared with those of OKN fast phases. Furthermore we found that the main sequence of spontaneous saccades depends heavily on background characteristics, with saccades in darkness being slower and lasting longer. On the contrary, the main sequence of visually guided saccades depended on background characteristics only very slightly. This implies that the existence of a visual saccade target largely cancels out the effect of background luminance. Our data underline the critical role of environmental conditions (light vs. darkness), behavioral tasks (e.g., spontaneous vs. visually guided), and the underlying neural networks for the exact spatiotemporal characteristics of fast eye movements.


2021 ◽  
Author(s):  
Marek A. Pedziwiatr ◽  
Elisabeth von dem Hagen ◽  
Christoph Teufel

Humans constantly move their eyes to explore the environment and obtain information. Competing theories of gaze guidance consider the factors driving eye movements within a dichotomy between low-level visual features and high-level object representations. However, recent developments in object perception indicate a complex and intricate relationship between features and objects. Specifically, image-independent object-knowledge can generate objecthood by dynamically reconfiguring how feature space is carved up by the visual system. Here, we adopt this emerging perspective of object perception, moving away from the simplifying dichotomy between features and objects in explanations of gaze guidance. We recorded eye movements in response to stimuli that appear as meaningless patches on initial viewing but are experienced as coherent objects once relevant object-knowledge has been acquired. We demonstrate that gaze guidance differs substantially depending on whether observers experienced the same stimuli as meaningless patches or organised them into object representations. In particular, fixations on identical images became object-centred, less dispersed, and more consistent across observers once exposed to relevant prior object-knowledge. Observers' gaze behaviour also indicated a shift from exploratory information-sampling to a strategy of extracting information mainly from selected, object-related image areas. These effects were evident from the first fixations on the image. Importantly, however, eye-movements were not fully determined by object representations but were best explained by a simple model that integrates image-computable features and high-level, knowledge-dependent object representations. Overall, the results show how information sampling via eye-movements in humans is guided by a dynamic interaction between image-computable features and knowledge-driven perceptual organisation.


Author(s):  
Agnes Wong

One main reason that we make eye movements is to solve a problem of information overload. A large field of vision allows an animal to survey the environment for food and to avoid predators, thus increasing its survival rate. Similarly, a high visual acuity also increases survival rates by allowing an animal to aim at a target more accurately, leading to higher killing rates and more food. However, there are simply not enough neurons in the brain to support a visual system that has high resolution over the entire field of vision. Faced with the competing evolutionary demands for high visual acuity and a large field of vision, an effective strategy is needed so that the brain will not be overwhelmed by a large amount of visual input. Some animals, such as rabbits, give up high resolution in favor of a larger field of vision (rabbits can see nearly 360°), whereas others, such as hawks, restrict their field of vision in return for a high visual acuity (hawks have vision as good as 20/2, about 10 times better than humans). In humans, rather than using one strategy over the other, the retina develops a very high spatial resolution in the center (i.e., the fovea), and a much lower resolution in the periphery. Although this “foveal compromise” strategy solves the problem of information overload, one result is that unless the image of an object of interest happens to fall on the fovea, the image is relegated to the low-resolution retinal periphery. The evolution of a mechanism to move the eyes is therefore necessary to complement this foveal compromise strategy by ensuring that an object of interest is maintained or brought to the fovea. To maintain the image of an object on the fovea, the vestibulo-ocular (VOR) and optokinetic systems generate eye movements to compensate for head motions. Likewise, the saccadic, smooth pursuit, and vergence systems generate eye movements to bring the image of an object of interest on the fovea. These different eye movements have different characteristics and involve different parts of the brain.


2006 ◽  
Vol 95 (3) ◽  
pp. 1588-1607 ◽  
Author(s):  
John S. Stahl ◽  
Robert A. James ◽  
Brian S. Oommen ◽  
Freek E. Hoebeek ◽  
Chris I. De Zeeuw

Mice carrying mutations of the gene encoding the ion pore of the P/Q calcium channel (Cacna1a) are an instance in which cerebellar dysfunction may be attributable to altered electrophysiology and thus provide an opportunity to study how neuronal intrinsic properties dictate signal processing in the ocular motor system. P/Q channel mutations can engender multiple effects at the single neuron, circuit, and behavioral levels; correlating physiological and behavioral abnormalities in multiple allelic strains will ultimately facilitate determining which alterations of physiology are responsible for specific behavioral aberrations. We used videooculography to quantify ocular motor behavior in tottering mutants aged 3 mo to 2 yr and compared their performance to data previously obtained in the allelic mutant rocker and C57BL/6 controls. Tottering mutants shared numerous abnormalities with rocker, including upward deviation of the eyes at rest, increased vestibuloocular reflex (VOR) phase lead at low stimulus frequencies, reduced VOR gain at high stimulus frequencies, reduced gain of the horizontal and vertical optokinetic reflex, reduced time constants of the neural integrator, and reduced plasticity of the VOR as assessed in a cross-axis training paradigm. Unlike rocker, young tottering mutants exhibited normal peak velocities of nystagmus fast phases, arguing against a role for neuromuscular transmission defects in the attenuation of compensatory eye movements. Tottering also differed by exhibiting directional asymmetries of the gains of optokinetic reflexes. The data suggest at least four pathophysiological mechanisms (two congenital and two acquired) are required to explain the ocular motor deficits in the two Cacna1a mutant strains.


Sign in / Sign up

Export Citation Format

Share Document