scholarly journals MetQy – an R package to query metabolic functions of genes and genomes

2017 ◽  
Author(s):  
Andrea Martinez–Vernon ◽  
Frederick Farrell ◽  
Orkun S. Soyer

AbstractSummaryWith the rapid accumulation of sequencing data from genomic and metagenomic studies, there is an acute need for better tools that facilitate their analyses against biological functions. To this end, we developed MetQy, an open–source R package designed for query–based analysis of functional units in [meta]genomes and/or sets of genes using the The Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Furthermore, MetQy contains visualization and analysis tools and facilitates KEGG’s flat file manipulation. Thus, MetQy enables better understanding of metabolic capabilities of known genomes or user–specified [meta]genomes by using the available information and can help guide studies in microbial ecology, metabolic engineering and synthetic biology.Availability and ImplementationThe MetQy R package is freely available and can be downloaded from our group’s website (http://osslab.lifesci.warwick.ac.uk) or GitHub (https://github.com/OSS-Lab/MetQy)[email protected]

2019 ◽  
Author(s):  
Anthony Federico ◽  
Stefano Monti

ABSTRACTSummaryGeneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases.Availability and implementationThe most recent version of the package is available at https://github.com/montilab/hypeR.Supplementary informationComprehensive documentation and tutorials, are available at https://montilab.github.io/hypeR-docs.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yue Zhao ◽  
Anthony Federico ◽  
Tyler Faits ◽  
Solaiappan Manimaran ◽  
Daniel Segrè ◽  
...  

Abstract Background Microbial communities that live in and on the human body play a vital role in health and disease. Recent advances in sequencing technologies have enabled the study of microbial communities at unprecedented resolution. However, these advances in data generation have presented novel challenges to researchers attempting to analyze and visualize these data. Results To address some of these challenges, we have developed animalcules, an easy-to-use interactive microbiome analysis toolkit for 16S rRNA sequencing data, shotgun DNA metagenomics data, and RNA-based metatranscriptomics profiling data. This toolkit combines novel and existing analytics, visualization methods, and machine learning models. For example, the toolkit features traditional microbiome analyses such as alpha/beta diversity and differential abundance analysis, combined with new methods for biomarker identification are. In addition, animalcules provides interactive and dynamic figures that enable users to understand their data and discover new insights. animalcules can be used as a standalone command-line R package or users can explore their data with the accompanying interactive R Shiny interface. Conclusions We present animalcules, an R package for interactive microbiome analysis through either an interactive interface facilitated by R Shiny or various command-line functions. It is the first microbiome analysis toolkit that supports the analysis of all 16S rRNA, DNA-based shotgun metagenomics, and RNA-sequencing based metatranscriptomics datasets. animalcules can be freely downloaded from GitHub at https://github.com/compbiomed/animalcules or installed through Bioconductor at https://www.bioconductor.org/packages/release/bioc/html/animalcules.html.


2020 ◽  
Author(s):  
Yue Zhao ◽  
Anthony Federico ◽  
Tyler Faits ◽  
Solaiappan Manimaran ◽  
Stefano Monti ◽  
...  

AbstractBackgroundMicrobial communities that live in and on the human body play a vital role in health and disease. Recent advances in sequencing technologies have enabled the study of microbial communities at unprecedented resolution. However, these advances in data generation have presented novel challenges to researchers attempting to analyze and visualize these data.ResultsTo address some of these challenges, we have developed animalcules, an easy-to-use interactive microbiome analysis toolkit for 16S rRNA sequencing data, shotgun DNA metagenomics data, and RNA-based metatranscriptomics profiling data. This toolkit combines novel and existing analytics, visualization methods, and machine learning models. For example, traditional microbiome analyses such as alpha/beta diversity and differential abundance analysis are enhanced in the toolkit, while new methods such as biomarker identification are introduced. Powerful interactive and dynamic figures generated by animalcules enable users to understand their data and discover new insights. animalcules can be used as a standalone command-line R package or users can explore their data with the accompanying interactive R Shiny interface.ConclusionsWe present animalcules, an R package for interactive microbiome analysis through either an interactive interface facilitated by R Shiny or various command-line functions. It is the first microbiome analysis toolkit that supports the analysis of all 16S rRNA, DNA-based shotgun metagenomics, and RNA-sequencing based metatranscriptomics datasets. animalcules can be freely downloaded from GitHub at https://github.com/compbiomed/animalcules or installed through Bioconductor at https://www.bioconductor.org/packages/release/bioc/html/animalcules.html.


2015 ◽  
Author(s):  
Luca De Sano ◽  
Giulio Caravagna ◽  
Daniele Ramazzotti ◽  
Alex Graudenzi ◽  
Giancarlo Mauri ◽  
...  

AbstractMotivationWe introduce TRONCO (TRanslational ONCOlogy), an open-source R package that implements the state-of-the-art algorithms for the inference of cancer progression models from (epi)genomic mutational profiles. TRONCO can be used to extract population-level models describing the trends of accumulation of alterations in a cohort of cross-sectional samples, e.g., retrieved from publicly available databases, and individual-level models that reveal the clonal evolutionary history in single cancer patients, when multiple samples, e.g., multiple biopsies or single-cell sequencing data, are available. The resulting models can provide key hints in uncovering the evolutionary trajectories of cancer, especially for precision medicine or personalized therapy.AvailabilityTRONCO is released under the GPL license, it is hosted in the Software section at http://bimib.disco.unimib.it/ and archived also at [email protected]


2016 ◽  
Author(s):  
Monther Alhamdoosh ◽  
Milica Ng ◽  
Nicholas J. Wilson ◽  
Julie M. Sheridan ◽  
Huy Huynh ◽  
...  

AbstractGene set enrichment (GSE) analysis allows researchers to efficiently extract biological insight from long lists of differentially expressed genes by interrogating them at a systems level. In recent years, there has been a proliferation of GSE analysis methods and hence it has become increasingly difficult for researchers to select an optimal GSE tool based on their particular data set. Moreover, the majority of GSE analysis methods do not allow researchers to simultaneously compare gene set level results between multiple experimental conditions.Results: The ensemble of genes set enrichment analyses (EGSEA) is a method developed for RNA-sequencing data that combines results from twelve algorithms and calculates collective gene set scores to improve the biological relevance of the highest ranked gene sets. redEGSEA’s gene set database contains around 25,000 gene sets from sixteen collections. It has multiple visualization capabilities that allow researchers to view gene sets at various levels of granularity. EGSEA has been tested on simulated data and on a number of human and mouse data sets and, based on biologists' feedback, consistently outperforms the individual tools that have been combined. Our evaluation demonstrates the superiority of the ensemble approach for GSE analysis, and its utility to effectively and efficiently extrapolate biological functions and potential involvement in disease processes from lists of differentially regulated genes.Availability and Implementation: EGSEA is available as an R package at http://www.bioconductor.org/packages/EGSEA/. The gene sets collections are available in the R package EGSEAdata from http://www.bioconductor.org/packages/EGSEA/.


2017 ◽  
Author(s):  
Nicholas D. Youngblut ◽  
Samuel E. Barnett ◽  
Daniel H. Buckley

AbstractCombining high throughput sequencing with stable isotope probing (HTS-SIP) is a powerful method for mapping in situ metabolic processes to thousands of microbial taxa. However, accurately mapping metabolic processes to taxa is complex and challenging. Multiple HTS-SIP data analysis methods have been developed, including high-resolution stable isotope probing (HR-SIP), multi-window high-resolution stable isotope probing (MW-HR-SIP), quantitative stable isotope probing (q-SIP), and ΔBD. Currently, the computational tools to perform these analyses are either not publicly available or lack documentation, testing, and developer support. To address this shortfall, we have developed the HTSSIP R package, a toolset for conducting HTS-SIP analyses in a straightforward and easily reproducible manner. The HTSSIP package, along with full documentation and examples, is available from CRAN at https://cran.r-project.org/web/packages/HTSSIP/index.html and Github at https://github.com/nick-youngblut/HTSSIP.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1405.1-1406
Author(s):  
F. Morton ◽  
J. Nijjar ◽  
C. Goodyear ◽  
D. Porter

Background:The American College of Rheumatology (ACR) and the European League Against Rheumatism (EULAR) individually and collaboratively have produced/recommended diagnostic classification, response and functional status criteria for a range of different rheumatic diseases. While there are a number of different resources available for performing these calculations individually, currently there are no tools available that we are aware of to easily calculate these values for whole patient cohorts.Objectives:To develop a new software tool, which will enable both data analysts and also researchers and clinicians without programming skills to calculate ACR/EULAR related measures for a number of different rheumatic diseases.Methods:Criteria that had been developed by ACR and/or EULAR that had been approved for the diagnostic classification, measurement of treatment response and functional status in patients with rheumatoid arthritis were identified. Methods were created using the R programming language to allow the calculation of these criteria, which were incorporated into an R package. Additionally, an R/Shiny web application was developed to enable the calculations to be performed via a web browser using data presented as CSV or Microsoft Excel files.Results:acreular is a freely available, open source R package (downloadable fromhttps://github.com/fragla/acreular) that facilitates the calculation of ACR/EULAR related RA measures for whole patient cohorts. Measures, such as the ACR/EULAR (2010) RA classification criteria, can be determined using precalculated values for each component (small/large joint counts, duration in days, normal/abnormal acute-phase reactants, negative/low/high serology classification) or by providing “raw” data (small/large joint counts, onset/assessment dates, ESR/CRP and CCP/RF laboratory values). Other measures, including EULAR response and ACR20/50/70 response, can also be calculated by providing the required information. The accompanying web application is included as part of the R package but is also externally hosted athttps://fragla.shinyapps.io/shiny-acreular. This enables researchers and clinicians without any programming skills to easily calculate these measures by uploading either a Microsoft Excel or CSV file containing their data. Furthermore, the web application allows the incorporation of additional study covariates, enabling the automatic calculation of multigroup comparative statistics and the visualisation of the data through a number of different plots, both of which can be downloaded.Figure 1.The Data tab following the upload of data. Criteria are calculated by the selecting the appropriate checkbox.Figure 2.A density plot of DAS28 scores grouped by ACR/EULAR 2010 RA classification. Statistical analysis has been performed and shows a significant difference in DAS28 score between the two groups.Conclusion:The acreular R package facilitates the easy calculation of ACR/EULAR RA related disease measures for whole patient cohorts. Calculations can be performed either from within R or by using the accompanying web application, which also enables the graphical visualisation of data and the calculation of comparative statistics. We plan to further develop the package by adding additional RA related criteria and by adding ACR/EULAR related measures for other rheumatic disorders.Disclosure of Interests:Fraser Morton: None declared, Jagtar Nijjar Shareholder of: GlaxoSmithKline plc, Consultant of: Janssen Pharmaceuticals UK, Employee of: GlaxoSmithKline plc, Paid instructor for: Janssen Pharmaceuticals UK, Speakers bureau: Janssen Pharmaceuticals UK, AbbVie, Carl Goodyear: None declared, Duncan Porter: None declared


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yixin Kong ◽  
Ariangela Kozik ◽  
Cindy H. Nakatsu ◽  
Yava L. Jones-Hall ◽  
Hyonho Chun

Abstract A latent factor model for count data is popularly applied in deconvoluting mixed signals in biological data as exemplified by sequencing data for transcriptome or microbiome studies. Due to the availability of pure samples such as single-cell transcriptome data, the accuracy of the estimates could be much improved. However, the advantage quickly disappears in the presence of excessive zeros. To correctly account for this phenomenon in both mixed and pure samples, we propose a zero-inflated non-negative matrix factorization and derive an effective multiplicative parameter updating rule. In simulation studies, our method yielded the smallest bias. We applied our approach to brain gene expression as well as fecal microbiome datasets, illustrating the superior performance of the approach. Our method is implemented as a publicly available R-package, iNMF.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xue Lin ◽  
Yingying Hua ◽  
Shuanglin Gu ◽  
Li Lv ◽  
Xingyu Li ◽  
...  

Abstract Background Genomic localized hypermutation regions were found in cancers, which were reported to be related to the prognosis of cancers. This genomic localized hypermutation is quite different from the usual somatic mutations in the frequency of occurrence and genomic density. It is like a mutations “violent storm”, which is just what the Greek word “kataegis” means. Results There are needs for a light-weighted and simple-to-use toolkit to identify and visualize the localized hypermutation regions in genome. Thus we developed the R package “kataegis” to meet these needs. The package used only three steps to identify the genomic hypermutation regions, i.e., i) read in the variation files in standard formats; ii) calculate the inter-mutational distances; iii) identify the hypermutation regions with appropriate parameters, and finally one step to visualize the nucleotide contents and spectra of both the foci and flanking regions, and the genomic landscape of these regions. Conclusions The kataegis package is available on Bionconductor/Github (https://github.com/flosalbizziae/kataegis), which provides a light-weighted and simple-to-use toolkit for quickly identifying and visualizing the genomic hypermuation regions.


2019 ◽  
Author(s):  
Wikum Dinalankara ◽  
Qian Ke ◽  
Donald Geman ◽  
Luigi Marchionni

AbstractGiven the ever-increasing amount of high-dimensional and complex omics data becoming available, it is increasingly important to discover simple but effective methods of analysis. Divergence analysis transforms each entry of a high-dimensional omics profile into a digitized (binary or ternary) code based on the deviation of the entry from a given baseline population. This is a novel framework that is significantly different from existing omics data analysis methods: it allows digitization of continuous omics data at the univariate or multivariate level, facilitates sample level analysis, and is applicable on many different omics platforms. The divergence package, available on the R platform through the Bioconductor repository collection, provides easy-to-use functions for carrying out this transformation. Here we demonstrate how to use the package with sample high throughput sequencing data from the Cancer Genome Atlas.


Sign in / Sign up

Export Citation Format

Share Document