scholarly journals kataegis: an R package for identification and visualization of the genomic localized hypermutation regions using high-throughput sequencing

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xue Lin ◽  
Yingying Hua ◽  
Shuanglin Gu ◽  
Li Lv ◽  
Xingyu Li ◽  
...  

Abstract Background Genomic localized hypermutation regions were found in cancers, which were reported to be related to the prognosis of cancers. This genomic localized hypermutation is quite different from the usual somatic mutations in the frequency of occurrence and genomic density. It is like a mutations “violent storm”, which is just what the Greek word “kataegis” means. Results There are needs for a light-weighted and simple-to-use toolkit to identify and visualize the localized hypermutation regions in genome. Thus we developed the R package “kataegis” to meet these needs. The package used only three steps to identify the genomic hypermutation regions, i.e., i) read in the variation files in standard formats; ii) calculate the inter-mutational distances; iii) identify the hypermutation regions with appropriate parameters, and finally one step to visualize the nucleotide contents and spectra of both the foci and flanking regions, and the genomic landscape of these regions. Conclusions The kataegis package is available on Bionconductor/Github (https://github.com/flosalbizziae/kataegis), which provides a light-weighted and simple-to-use toolkit for quickly identifying and visualizing the genomic hypermuation regions.

2020 ◽  
Author(s):  
Renesh Bedre ◽  
Carlos Avila ◽  
Kranthi Mandadi

AbstractMotivationUse of high-throughput sequencing (HTS) has become indispensable in life science research. Raw HTS data contains several sequencing artifacts, and as a first step it is imperative to remove the artifacts for reliable downstream bioinformatics analysis. Although there are multiple stand-alone tools available that can perform the various quality control steps separately, availability of an integrated tool that can allow one-step, automated quality control analysis of HTS datasets will significantly enhance handling large number of samples parallelly.ResultsHere, we developed HTSeqQC, a stand-alone, flexible, and easy-to-use software for one-step quality control analysis of raw HTS data. HTSeqQC can evaluate HTS data quality and perform filtering and trimming analysis in a single run. We evaluated the performance of HTSeqQC for conducting batch analysis of HTS datasets with 322 sample datasets with an average ∼ 1M (paired end) sequence reads per sample. HTSeqQC accomplished the QC analysis in ∼3 hours in distributed mode and ∼31 hours in shared mode, thus underscoring its utility and robust performance.Availability and implementationHTSeqQC software, Docker image and Nextflow template are available for download at https://github.com/reneshbedre/HTSeqQC and graphical user interface (GUI) is available at CyVerse Discovery Environment (DE) (https://cyverse.org/). Documentation available at https://reneshbedre.github.io/blog/htseqqc.html and https://cyverse-htseqqc-cyverse-tutorial.readthedocs-hosted.com/en/latest/ (for CyVerse).ContactKranthi Mandadi ([email protected])Supplementary informationSupplementary information provided in Supplementary File 1.


2017 ◽  
Author(s):  
Nicholas D. Youngblut ◽  
Samuel E. Barnett ◽  
Daniel H. Buckley

AbstractCombining high throughput sequencing with stable isotope probing (HTS-SIP) is a powerful method for mapping in situ metabolic processes to thousands of microbial taxa. However, accurately mapping metabolic processes to taxa is complex and challenging. Multiple HTS-SIP data analysis methods have been developed, including high-resolution stable isotope probing (HR-SIP), multi-window high-resolution stable isotope probing (MW-HR-SIP), quantitative stable isotope probing (q-SIP), and ΔBD. Currently, the computational tools to perform these analyses are either not publicly available or lack documentation, testing, and developer support. To address this shortfall, we have developed the HTSSIP R package, a toolset for conducting HTS-SIP analyses in a straightforward and easily reproducible manner. The HTSSIP package, along with full documentation and examples, is available from CRAN at https://cran.r-project.org/web/packages/HTSSIP/index.html and Github at https://github.com/nick-youngblut/HTSSIP.


2019 ◽  
Author(s):  
Anthony Federico ◽  
Stefano Monti

ABSTRACTSummaryGeneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases.Availability and implementationThe most recent version of the package is available at https://github.com/montilab/hypeR.Supplementary informationComprehensive documentation and tutorials, are available at https://montilab.github.io/hypeR-docs.


Author(s):  
Anthony Federico ◽  
Stefano Monti

Abstract Summary Geneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases. Availability and implementation The most recent version of the package is available at https://github.com/montilab/hypeR. Contact [email protected] or [email protected]


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Tao Zhu ◽  
Keyan Liao ◽  
Rongfang Zhou ◽  
Chunjiao Xia ◽  
Weibo Xie

AbstractATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) provides an efficient way to analyze nucleosome-free regions and has been applied widely to identify transcription factor footprints. Both applications rely on the accurate quantification of insertion events of the hyperactive transposase Tn5. However, due to the presence of the PCR amplification, it is impossible to accurately distinguish independently generated identical Tn5 insertion events from PCR duplicates using the standard ATAC-seq technique. Removing PCR duplicates based on mapping coordinates introduces increasing bias towards highly accessible chromatin regions. To overcome this limitation, we establish a UMI-ATAC-seq technique by incorporating unique molecular identifiers (UMIs) into standard ATAC-seq procedures. UMI-ATAC-seq can rescue about 20% of reads that are mistaken as PCR duplicates in standard ATAC-seq in our study. We demonstrate that UMI-ATAC-seq could more accurately quantify chromatin accessibility and significantly improve the sensitivity of identifying transcription factor footprints. An analytic pipeline is developed to facilitate the application of UMI-ATAC-seq, and it is available at https://github.com/tzhu-bio/UMI-ATAC-seq.


2019 ◽  
Author(s):  
Lucas A. Nell

AbstractHigh-throughput sequencing (HTS) is central to the study of population genomics and has an increasingly important role in constructing phylogenies. Choices in research design for sequencing projects can include a wide range of factors, such as sequencing platform, depth of coverage, and bioinformatic tools. Simulating HTS data better informs these decisions. However, current standalone HTS simulators cannot generate genomic variants under even somewhat complex evolutionary scenarios, which greatly reduces their usefulness for fields such as population genomics and phylogenomics. Here I present the R package jackalope that simply and efficiently simulates (i) variants from reference genomes and (ii) reads from both Illumina and Pacific Biosciences (PacBio) platforms. Genomic variants can be simulated using phylogenies, gene trees, coalescent-simulation output, population-genomic summary statistics, and Variant Call Format (VCF) files. jackalope can simulate single, paired-end, or mate-pair Illumina reads, as well as reads from Pacific Biosciences. These simulations include sequencing errors, mapping qualities, multiplexing, and optical/PCR duplicates. It can read reference genomes from FASTA files and can simulate new ones, and all outputs can be written to standard file formats. jackalope is available for Mac, Windows, and Linux systems.


F1000Research ◽  
2014 ◽  
Vol 2 ◽  
pp. 217 ◽  
Author(s):  
Guillermo Barturen ◽  
Antonio Rueda ◽  
José L. Oliver ◽  
Michael Hackenberg

Whole genome methylation profiling at a single cytosine resolution is now feasible due to the advent of high-throughput sequencing techniques together with bisulfite treatment of the DNA. To obtain the methylation value of each individual cytosine, the bisulfite-treated sequence reads are first aligned to a reference genome, and then the profiling of the methylation levels is done from the alignments. A huge effort has been made to quickly and correctly align the reads and many different algorithms and programs to do this have been created. However, the second step is just as crucial and non-trivial, but much less attention has been paid to the final inference of the methylation states. Important error sources do exist, such as sequencing errors, bisulfite failure, clonal reads, and single nucleotide variants.We developed MethylExtract, a user friendly tool to: i) generate high quality, whole genome methylation maps and ii) detect sequence variation within the same sample preparation. The program is implemented into a single script and takes into account all major error sources. MethylExtract detects variation (SNVs – Single Nucleotide Variants) in a similar way to VarScan, a very sensitive method extensively used in SNV and genotype calling based on non-bisulfite-treated reads. The usefulness of MethylExtract is shown by means of extensive benchmarking based on artificial bisulfite-treated reads and a comparison to a recently published method, called Bis-SNP.MethylExtract is able to detect SNVs within High-Throughput Sequencing experiments of bisulfite treated DNA at the same time as it generates high quality methylation maps. This simultaneous detection of DNA methylation and sequence variation is crucial for many downstream analyses, for example when deciphering the impact of SNVs on differential methylation. An exclusive feature of MethylExtract, in comparison with existing software, is the possibility to assess the bisulfite failure in a statistical way. The source code, tutorial and artificial bisulfite datasets are available at http://bioinfo2.ugr.es/MethylExtract/ and http://sourceforge.net/projects/methylextract/, and also permanently accessible from 10.5281/zenodo.7144.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-13-SCI-13
Author(s):  
Sandeep S. Dave

High throughput sequencing is a revolutionary technology for the definition of the genomic features of tumors. This talk will provide a review of the relevant methodologies for non-experts in the field. The presentation will include a discussion of how high throughput sequencing is performed, its relative strengths and weaknesses, and how it is applicable to formalin-fixed and fresh/frozen tissue samples. The talk will also describe future directions in the genomic analysis of tumors. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Tenglong Li ◽  
Yuqing Zhang ◽  
Prasad Patil ◽  
W. Evan Johnson

AbstractNon-ignorable technical variation is commonly observed across data from multiple experimental runs, platforms, or studies. These so-called batch effects can lead to difficulty in merging data from multiple sources, as they can severely bias the outcome of the analysis. Many groups have developed approaches for removing batch effects from data, usually by accommodating batch variables into the analysis (one-step correction) or by preprocessing the data prior to the formal or final analysis (two-step correction). One-step correction is often desirable due it its simplicity, but its flexibility is limited and it can be difficult to include batch variables uniformly when an analysis has multiple stages. Two-step correction allows for richer models of batch mean and variance. However, prior investigation has indicated that two-step correction can lead to incorrect statistical inference in downstream analysis. Generally speaking, two-step approaches introduce a correlation structure in the corrected data, which, if ignored, may lead to either exaggerated or diminished significance in downstream applications such as differential expression analysis. Here, we provide more intuitive and more formal evaluations of the impacts of two-step batch correction compared to existing literature. We demonstrate that the undesired impacts of two-step correction (exaggerated or diminished significance) depend on both the nature of the study design and the batch effects. We also provide strategies for overcoming these negative impacts in downstream analyses using the estimated correlation matrix of the corrected data. We compare the results of our proposed workflow with the results from other published one-step and two-step methods and show that our methods lead to more consistent false discovery controls and power of detection across a variety of batch effect scenarios. Software for our method is available through GitHub (https://github.com/jtleek/sva-devel) and will be available in future versions of the sva R package in the Bioconductor project (https://bioconductor.org/packages/release/bioc/html/sva.html). Batch effect; Two-step batch adjustment; ComBat; Sample correlation adjustment; Generalized least squares


Sign in / Sign up

Export Citation Format

Share Document