scholarly journals Subtle perturbations of the maize methylome reveal genes and transposons silenced by DNA methylation

2017 ◽  
Author(s):  
Sarah N. Anderson ◽  
Greg Zynda ◽  
Jawon Song ◽  
Zhaoxue Han ◽  
Matthew Vaughn ◽  
...  

ABSTRACTDNA methylation is a chromatin modification that can provide epigenetic regulation of gene and transposon expression. Plants utilize several pathways to establish and maintain DNA methylation in specific sequence contexts. The chromomethylase (CMT) genes maintain CHG (where H = A, C or T) methylation. The RNA-directed DNA methylation (RdDM) pathway is important for CHH methylation. Transcriptome analysis was performed in a collection of Zea mays lines carrying mutant alleles for CMT or RdDM-associated genes. While the majority of the transcriptome was not affected, we identified sets of genes and transposon families sensitive to context-specific decreases in DNA methylation in mutant lines. Many of the genes that are up-regulated in CMT mutant lines have high levels of CHG methylation, while genes that are differentially expressed in RdDM mutants are enriched for having nearby mCHH islands, providing evidence that context-specific DNA methylation directly regulates expression of a small number of genes. The analysis of a diverse set of inbred lines revealed that many genes regulated by CMTs exhibit natural variation for DNA methylation and gene expression. Transposon families with differential expression in the mutant genotypes show few defining features, though several families up-regulated in RdDM mutants show enriched expression in endosperm, highlighting the importance for this pathway during reproduction. Taken together, our findings suggest that while the number of genes and transposon families whose expression is reproducibly affected by mild perturbations in context-specific methylation is small, there are distinct patterns for loci impacted by RdDM and CMT mutants.

Author(s):  
Agata Tyczewska ◽  
Joanna Gracz-Bernaciak ◽  
Jakub Szymkowiak ◽  
Tomasz Twardowski

AbstractDNA methylation plays a crucial role in the regulation of gene expression, activity of transposable elements, defense against foreign DNA, and inheritance of specific gene expression patterns. The link between stress exposure and sequence-specific changes in DNA methylation was hypothetical until it was shown that stresses can induce changes in the gene expression through hypomethylation or hypermethylation of DNA. To detect changes in DNA methylation under herbicide stress in two local Zea mays inbred lines exhibiting differential susceptibility to Roundup®, the methylation-sensitive amplified polymorphism (MSAP) technique was used. The overall DNA methylation levels were determined at approximately 60% for both tested lines. The most significant changes were observed for the more sensitive Z. mays line, where 6 h after the herbicide application, a large increase in the level of DNA methylation (attributed to the increase in fully methylated bands (18.65%)) was noted. DNA sequencing revealed that changes in DNA methylation profiles occurred in genes encoding heat shock proteins, membrane proteins, transporters, kinases, lipases, methyltransferases, zinc-finger proteins, cytochromes, and transposons. Herbicide stress-induced changes depended on the Z. mays variety, and the large increase in DNA methylation level in the sensitive line resulted in a lower ability to cope with stress conditions.


2016 ◽  
Vol 113 (32) ◽  
pp. 9111-9116 ◽  
Author(s):  
Adam J. Bewick ◽  
Lexiang Ji ◽  
Chad E. Niederhuth ◽  
Eva-Maria Willing ◽  
Brigitte T. Hofmeister ◽  
...  

In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum. Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales.


2018 ◽  
Vol 69 (21) ◽  
pp. 5293-5305 ◽  
Author(s):  
Emmi Alakärppä ◽  
Heikki M Salo ◽  
Luis Valledor ◽  
Maria Jesús Cañal ◽  
Hely Häggman ◽  
...  

2016 ◽  
Vol 311 (6) ◽  
pp. L1245-L1258 ◽  
Author(s):  
Isaac K. Sundar ◽  
Irfan Rahman

Chromatin-modifying enzymes mediate DNA methylation and histone modifications on recruitment to specific target gene loci in response to various stimuli. The key enzymes that regulate chromatin accessibility for maintenance of modifications in DNA and histones, and for modulation of gene expression patterns in response to cigarette smoke (CS), are not known. We hypothesize that CS exposure alters the gene expression patterns of chromatin-modifying enzymes, which then affects multiple downstream pathways involved in the response to CS. We have, therefore, analyzed chromatin-modifying enzyme profiles and validated by quantitative real-time PCR (qPCR). We also performed immunoblot analysis of targeted histone marks in C57BL/6J mice exposed to acute and subchronic CS, and of lungs from nonsmokers, smokers, and patients with chronic obstructive pulmonary disease (COPD). We found a significant increase in expression of several chromatin modification enzymes, including DNA methyltransferases, histone acetyltransferases, histone methyltransferases, and SET domain proteins, histone kinases, and ubiquitinases. Our qPCR validation data revealed a significant downregulation of Dnmt1, Dnmt3a, Dnmt3b, Hdac2, Hdac4, Hat1, Prmt1, and Aurkb. We identified targeted chromatin histone marks (H3K56ac and H4K12ac), which are induced by CS. Thus CS-induced genotoxic stress differentially affects the expression of epigenetic modulators that regulate transcription of target genes via DNA methylation and site-specific histone modifications. This may have implications in devising epigenetic-based therapies for COPD and lung cancer.


2019 ◽  
Vol 50 (Special) ◽  
Author(s):  
Shenawa & Alfalahi

Methylation Sensitive Amplification Polymorphism (MSAP) was used to characterize the alterations in DNA methylation in maize (Zea mays L.) inbred lines and their half-daillels affected by plant densities (213333 plant h-1 and 13333 plant h-1). The two restriction was enzymes ( HpaII and MspI) succeeded in diagnosing a total of 23 specific loci, most of (22 loci) were Methylation Sensitive Loci (MSL), while the only one NML (No Methylated Loci) was monomorphic. Thirteen out of 22 MSL loci polymorphic, recording a were polymorphism percentage of 59%. Results of FeSOD gene expression cleared the different response of maize inbreds and hybrids to high plant density stress. Generally, the expression of  the targeted gene was increased in plants submitted to high plant density stress compared with low density. The inbred 3 and its single hybrid 1×3 achieved the highest level of gene expression under high planting density (5505.7 and 21098.6 copy, respectively), meanwhile, inbred 5 and it's single hybrid 4×5 gained the maximum level of FeSOD expression at the low plant density (8317.6 and 6862.1 copy, respectively). The response reached to its maximum limit in many of those genotypes, some other genotypes showed relatively steady performance along with higher stress, such as parent 1, that gave the lowest number of gene copies in both, high and low plant density (1375.8 and 1569.5 copy, respectively).


2018 ◽  
Vol 69 (1) ◽  
pp. 107 ◽  
Author(s):  
Satoshi Takahashi ◽  
Naoki Fukushima ◽  
Kenji Osabe ◽  
Etsuko Itabashi ◽  
Motoki Shimizu ◽  
...  

DNA methylation is an epigenetic gene regulatory mechanism that plays an essential role in gene expression, transposon silencing, genome imprinting and plant development. We investigated the influence of DNA methylation on gene expression in Brassica rapa L., to understand whether epigenetic differences exist between inbred lines. Genome-wide DNA methylation was analysed by methylated DNA immunoprecipitation sequencing (MeDIP-seq) of 14-day-old first and second leaves from two inbred lines of Chinese cabbage, one susceptible and one resistant to fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans. MACS (model-based analysis for ChIP-seq) identified DNA methylation peaks in genic regions including 2 kb upstream, exon, intron and 2 kb downstream. More than 65% of genes showed similar patterns of DNA methylation in the genic regions in the two inbred lines. DNA methylation states of the two inbred lines were compared with their transcriptome. Genes having DNA methylation in the intron and in the 200 bp upstream and downstream regions were associated with a lower expression level in both lines. A small number of genes showed a negative correlation between differences in DNA methylation levels and differences in transcriptional levels in the two inbred lines, suggesting that DNA methylation in these genes results in transcriptional suppression.


2016 ◽  
Vol 57 (6) ◽  
pp. 646-654 ◽  
Author(s):  
Suvendu Mondal ◽  
Young Sam Go ◽  
Seung Sik Lee ◽  
Byung Yeoup Chung ◽  
Jin-Hong Kim

Abstract Dynamic histone modifications play an important role in controlling gene expression in response to various environmental cues. This mechanism of regulation of gene expression is important for sessile organisms, like land plants. We have previously reported consistent upregulation of various marker genes in response to gamma rays at various post-irradiation times. In the present study, we performed various chromatin modification analyses at selected loci using the standard chromatin immunoprecipitation procedure, and demonstrate that upregulation of these genes is associated with histone H3 lysine 4 tri-methylation (H3K4me3) at the gene body or transcription start sites of these loci. Further, at specific AtAgo2 loci, both H3K4me3 and histone H3 lysine 9 acetylation (H3K9ac) are important in controlling gene expression in response to gamma irradiation. There was no change in DNA methylation in these selected loci. We conclude that specific histone modification such as H3K4me3 and H3K9ac may be more important in activating gene expression in these selected loci in response to gamma irradiation than a change in DNA methylation.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 781-797
Author(s):  
R Keith Slotkin ◽  
Michael Freeling ◽  
Damon Lisch

Abstract Mutations in a number of genes responsible for the maintenance of transposon silencing have been reported. However, the initiation of epigenetic silencing of transposable elements is poorly characterized. Here, we report the identification of a single dominant locus, Mu killer (Muk), that acts to silence MuDR, the autonomous regulatory transposon of the Mutator family of transposable elements in maize. Muk results in the methylation of MuDR TIRs and is competent to silence one or several active MuDR elements. Silencing by Muk is not dependent on the position of the MuDR element and occurs gradually during plant development. Transcript levels of the MuDR transposase, mudrA, decrease substantially when Muk is present. The other transcript encoded by MuDR, mudrB, also fails to accumulate in the poly(A) RNA fraction when MuDR and Muk are combined. Additionally, plants undergoing MuDR silencing produce small, mudrA-homologous ∼26-nt RNAs, suggesting a role for RNA-directed DNA methylation in MuDR silencing. MuDR elements silenced by Muk remain silenced even in plants that do not inherit Muk, suggesting that Muk is required for the initiation of MuDR silencing but not for its maintenance.


2021 ◽  
Vol 22 (15) ◽  
pp. 8285
Author(s):  
Qi Wang ◽  
Jie Xu ◽  
Xuemei Pu ◽  
Haozhe Lv ◽  
Yanjun Liu ◽  
...  

DNA methylation is important for plant growth, development, and stress response. To understand DNA methylation dynamics in maize roots under water stress (WS), we reanalyzed DNA methylation sequencing data to profile DNA methylation and the gene expression landscape of two inbred lines with different drought sensitivities, as well as two of their derived recombination inbred lines (RILs). Combined with genotyping-by-sequencing, we found that the inheritance pattern of DNA methylation between RILs and parental lines was sequence-dependent. Increased DNA methylation levels were observed under WS and the methylome of drought-tolerant inbred lines were much more stable than that of the drought-sensitive inbred lines. Distinctive differentially methylated genes were found among diverse genetic backgrounds, suggesting that inbred lines with different drought sensitivities may have responded to stress in varying ways. Gene body DNA methylation showed a negative correlation with gene expression but a positive correlation with exon splicing events. Furthermore, a positive correlation of a varying extent was observed between small interfering RNA (siRNA) and DNA methylation, which at different genic regions. The response of siRNAs under WS was consistent with the differential DNA methylation. Taken together, our data can be useful in deciphering the roles of DNA methylation in plant drought-tolerance variations and in emphasizing its function in alternative splicing.


Sign in / Sign up

Export Citation Format

Share Document