scholarly journals Differentiation of primate primordial germ cell-like cells following transplantation into the adult gonadal niche

2017 ◽  
Author(s):  
Enrique Sosa ◽  
Di Chen ◽  
Ernesto J. Rojas ◽  
Jon D. Hennebold ◽  
Karen A. Peters ◽  
...  

AbstractA major challenge in stem cell differentiation validation is the availability of bioassays to prove cell types generated in vitro are equivalent to cells in vivo. In the mouse model, differentiation of primordial germ cell-like cells (PGCLCs) from pluripotent cells was validated by transplantation, leading to the generation of spermatogenesis and to the birth of offspring. Here we report the use of xenotransplantation (monkey to mouse) and homologous transplantation (monkey to monkey) to validate our in vitro protocol for differentiating male rhesus macaque PGCLCs (rPGCLCs) from rhesus macaque induced pluripotent stem cells (riPSCs). Specifically, transplantation of aggregates containing rPGCLCs into mouse and nonhuman primate testicles overcomes a major bottleneck in rPGCLC differentiation with the expression of VASA and MAGEA4, but not ENO2. These findings suggest that immature rPGCLCs once transplanted into an adult gonadal niche commit to differentiate towards late PGCs and spermatogonia-like cells but do not complete the conversion into ENO2-positive spermatogonia.

2021 ◽  
Vol 22 (2) ◽  
pp. 661
Author(s):  
Wei-Fang Chang ◽  
Min Peng ◽  
Jing Hsu ◽  
Jie Xu ◽  
Huan-Chieh Cho ◽  
...  

Survival motor neuron (SMN) is ubiquitously expressed in many cell types and its encoding gene, survival motor neuron 1 gene (SMN1), is highly conserved in various species. SMN is involved in the assembly of RNA spliceosomes, which are important for pre-mRNA splicing. A severe neurogenic disease, spinal muscular atrophy (SMA), is caused by the loss or mutation of SMN1 that specifically occurred in humans. We previously reported that SMN plays roles in stem cell biology in addition to its roles in neuron development. In this study, we investigated whether SMN can improve the propagation of spermatogonia stem cells (SSCs) and facilitate the spermatogenesis process. In in vitro culture, SSCs obtained from SMA model mice showed decreased growth rate accompanied by significantly reduced expression of spermatogonia marker promyelocytic leukemia zinc finger (PLZF) compared to those from heterozygous and wild-type littermates; whereas SMN overexpressed SSCs showed enhanced cell proliferation and improved potency. In vivo, the superior ability of homing and complete performance in differentiating progeny was shown in SMN overexpressed SSCs in host seminiferous tubule of transplant experiments compared to control groups. To gain insights into the roles of SMN in clinical infertility, we derived human induced pluripotent stem cells (hiPSCs) from azoospermia patients (AZ-hiPSCs) and from healthy control (ct-hiPSCs). Despite the otherwise comparable levels of hallmark iPCS markers, lower expression level of SMN1 was found in AZ-hiPSCs compared with control hiPSCs during in vitro primordial germ cell like cells (PGCLCs) differentiation. On the other hand, overexpressing hSMN1 in AZ-hiPSCs led to increased level of pluripotent markers such as OCT4 and KLF4 during PGCLC differentiation. Our work reveal novel roles of SMN in mammalian spermatogenesis and suggest new therapeutic targets for azoospermia treatment.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Young Sun Hwang ◽  
Shinnosuke Suzuki ◽  
Yasunari Seita ◽  
Jumpei Ito ◽  
Yuka Sakata ◽  
...  

Abstract Establishment of spermatogonia throughout the fetal and postnatal period is essential for production of spermatozoa and male fertility. Here, we establish a protocol for in vitro reconstitution of human prospermatogonial specification whereby human primordial germ cell (PGC)-like cells differentiated from human induced pluripotent stem cells are further induced into M-prospermatogonia-like cells and T1 prospermatogonia-like cells (T1LCs) using long-term cultured xenogeneic reconstituted testes. Single cell RNA-sequencing is used to delineate the lineage trajectory leading to T1LCs, which closely resemble human T1-prospermatogonia in vivo and exhibit gene expression related to spermatogenesis and diminished proliferation, a hallmark of quiescent T1 prospermatogonia. Notably, this system enables us to visualize the dynamic and stage-specific regulation of transposable elements during human prospermatogonial specification. Together, our findings pave the way for understanding and reconstructing human male germline development in vitro.


2012 ◽  
Vol 49 (2) ◽  
pp. R89-R111 ◽  
Author(s):  
Clara V Alvarez ◽  
Montserrat Garcia-Lavandeira ◽  
Maria E R Garcia-Rendueles ◽  
Esther Diaz-Rodriguez ◽  
Angela R Garcia-Rendueles ◽  
...  

Embryonic, adult, artificially reprogrammed, and cancer…– there are various types of cells associated with stemness. Do they have something fundamental in common? Are we applying a common name to very different entities? In this review, we will revisit the characteristics that define ‘pluripotency’, the main property of stem cells (SCs). For each main type of physiological (embryonic and adult) or synthetic (induced pluripotent) SCs, markers and functional behavior in vitro and in vivo will be described. We will review the pioneering work that has led to obtaining human SC lines, together with the problems that have arisen, both in a biological context (DNA alterations, heterogeneity, tumors, and immunogenicity) and with regard to ethical concerns. Such problems have led to proposals for new operative procedures for growing human SCs of sufficiently high quality for use as models of disease and in human therapy. Finally, we will review the data from the first clinical trials to use various types of SCs.


2020 ◽  
Author(s):  
Young Sun Hwang ◽  
Shinnosuke Suzuki ◽  
Yasunari Seita ◽  
Jumpei Ito ◽  
Yuka Sakata ◽  
...  

ABSTRACTEstablishment of spermatogonia throughout the fetal and postnatal period is essential for production of spermatozoa and male fertility. Here, we established a protocol for in vitro reconstitution of human prospermatogonial specification whereby human primordial germ cell (PGC)-like cells (hPGCLCs) differentiated from human induced pluripotent stem cells were further induced into M-prospermatogonia-like cells (MLCs) and T1 prospermatogonia-like cells (T1LCs) using long-term cultured xenogeneic reconstituted testes. Single cell RNA-sequencing was used to delineate the lineage trajectory leading to T1LCs, which closely resemble human T1-prospermatogonia in vivo and exhibited gene expression related to spermatogenesis and diminished proliferation, a hallmark of quiescent T1 prospermatogonia. Notably, this system enabled us to visualize the dynamic and stage-specific regulation of transposable elements during human prospermatogonial specification. Together, our findings pave the way for understanding and reconstructing human male germline development in vitro.


2019 ◽  
Vol 30 (16) ◽  
pp. 1985-1999 ◽  
Author(s):  
Lucas R. Smith ◽  
Jerome Irianto ◽  
Yuntao Xia ◽  
Charlotte R. Pfeifer ◽  
Dennis E. Discher

Tissue regeneration at an injured site depends on proliferation, migration, and differentiation of resident stem or progenitor cells, but solid tissues are often sufficiently dense and constricting that nuclei are highly stressed by migration. In this study, constricted migration of myoblastic cell types and mesenchymal stem cells (MSCs) increases nuclear rupture, increases DNA damage, and modulates differentiation. Fewer myoblasts fuse into regenerating muscle in vivo after constricted migration in vitro, and myodifferentiation in vitro is likewise suppressed. Myosin II inhibition rescues rupture and DNA damage, implicating nuclear forces, while mitosis and the cell cycle are suppressed by constricted migration, consistent with a checkpoint. Although perturbed proliferation fails to explain defective differentiation, nuclear rupture mislocalizes differentiation-relevant MyoD and KU80 (a DNA repair factor), with nuclear entry of the DNA-binding factor cGAS. Human MSCs exhibit similar damage, but osteogenesis increases—which is relevant to bone and to calcified fibrotic tissues, including diseased muscle. Tissue repair can thus be modulated up or down by the curvature of pores through which stem cells squeeze.


2020 ◽  
Vol 27 (21) ◽  
pp. 3448-3462
Author(s):  
Marco Piccoli ◽  
Andrea Ghiroldi ◽  
Michelle M. Monasky ◽  
Federica Cirillo ◽  
Giuseppe Ciconte ◽  
...  

The development of new therapeutic applications for adult and embryonic stem cells has dominated regenerative medicine and tissue engineering for several decades. However, since 2006, induced Pluripotent Stem Cells (iPSCs) have taken center stage in the field, as they promised to overcome several limitations of the other stem cell types. Nonetheless, other promising approaches for adult cell reprogramming have been attempted over the years, even before the generation of iPSCs. In particular, two years before the discovery of iPSCs, the possibility of synthesizing libraries of large organic compounds, as well as the development of high-throughput screenings to quickly test their biological activity, enabled the identification of a 2,6-disubstituted purine, named reversine, which was shown to be able to reprogram adult cells to a progenitor-like state. Since its discovery, the effect of reversine has been confirmed on different cell types, and several studies on its mechanism of action have revealed its central role in inhibitory activity on several kinases implicated in cell cycle regulation and cytokinesis. These key features, together with its chemical nature, suggested a possible use of the molecule as an anti-cancer drug. Remarkably, reversine exhibited potent cytotoxic activity against several tumor cell lines in vitro and a significant effect in decreasing tumor progression and metastatization in vivo. Thus, 15 years since its discovery, this review aims at critically summarizing the current knowledge to clarify the dual role of reversine as a dedifferentiating agent and anti-cancer drug.


Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 5035-5042 ◽  
Author(s):  
Xianpeng Sang ◽  
Matthew S. Curran ◽  
Antony W. Wood

IGF signaling has been shown to stimulate migration of multiple cell types in vitro, but few studies have confirmed an equivalent function for IGF signaling in vivo. We recently showed that suppression of IGF receptors in the zebrafish embryo disrupts primordial germ cell (PGC) migration, but the mechanism underlying these effects has not been elucidated. We hypothesized that PGCs are intrinsically dependent upon IGF signaling during the migratory phase of development. To test this hypothesis, we first examined the spatial expression patterns of IGF ligand genes (igf1, igf2a, and igf2b) in the zebrafish embryo. In situ analyses revealed distinct expression patterns for each IGF ligand gene, with igf2b mRNA expressed in a spatial pattern that correlates strongly with PGC migration. To determine whether PGC migration is responsive to IGF signaling in vivo, we synthesized gene hybrid expression constructs that permit conditional overexpression of IGF ligands by PGCs into the PGC microenvironment. Conditional overexpression of IGF ligands consistently disrupted PGC migration, confirming that PGC migration is sensitive to local aberrations in IGF signaling. Finally, we show that conditional suppression of IGF signaling, via PGC-specific overexpression of a mutant IGF-I receptor, disrupts PGC migration, confirming that zebrafish PGCs intrinsically require IGF signaling for directional migration in vivo. Collectively, these studies confirm an in vivo role for IGF signaling in cell migration and identify a candidate ligand gene (igf2b) regulating PGC migration in the zebrafish.


2021 ◽  
Author(s):  
Dilara Sen ◽  
Alexis Voulgaropoulos ◽  
Albert J. Keung

ABSTRACTBackgroundBiophysical factors such as shape and mechanical forces are known to play crucial roles in stem cell differentiation, embryogenesis and neurodevelopment. However, the complexity and experimental challenges capturing such early stages of development, and ethical concerns associated with human embryo and fetal research, limit our understanding of how these factors affect human brain organogenesis. Human cerebral organoids (hCO) are attractive models due to their ability to model important brain regions and transcriptomics of early in vivo brain development. Furthermore, they provide three-dimensional environments that better mimic the in vivo environment. To date, they have been used to understand the effects of genetics and soluble factors on neurodevelopment. Establishing links between spatial factors and hCO development will require the development of new approaches.ResultsHere, we investigated the effects of early geometric confinements on transcriptomic changes during hCO differentiation. Using a custom and tunable agarose microwell platform we generated embryoid bodies (EB) of diverse shapes and then further differentiated those EBs to whole brain hCOs. Our results showed that the microwells did not have negative gross impacts on the ability of the hCOs to differentiate generally towards neural fates, and there were clear shape dependent effects on neural lineage specification. In particular, we observed that non-spherical shapes showed signs of altered neurodevelopmental kinetics and favored the development of medial ganglionic eminence-associated brain regions and cell types over cortical regions.ConclusionsThe findings presented here suggest a role for spatial factors in brain region specification during hCO development. Understanding these spatial patterning factors will not only improve understanding of in vivo development and differentiation, but also provide important handles with which to advance and improve control over human model systems for in vitro applications.


Sign in / Sign up

Export Citation Format

Share Document