scholarly journals Genetically encoded ratiometric indicators for potassium ion

2018 ◽  
Author(s):  
Yi Shen ◽  
Sheng-Yi Wu ◽  
Vladimir Rancic ◽  
Yong Qian ◽  
Shin-Ichiro Miyashita ◽  
...  

AbstractPotassium ion (K+) homeostasis and dynamics play critical roles in regulating various biological activities, and the ability to monitor K+ spatial-temporal dynamics is critical to understanding these biological functions. Here we report the design and characterization of a Förster resonance energy transfer (FRET)-based genetically encoded K+ indicator, KIRIN1, constructed by inserting a bacterial cytosolic K+ binding protein (Kbp) between a fluorescent protein (FP) FRET pair, mCerulean3 and cp173Venus. Binding of K+ induces a conformational change in Kbp, resulting in an increase in FRET efficiency. KIRIN1 was able to detect K+ at physiologically relevant concentrations in vitro and is highly selective toward K+ over Na+. We further demonstrated that KIRIN1 allowed real-time imaging of pharmacologically induced depletion of cytosolic K+ in live cells, and KIRIN1 also enabled optical tracing of K+ efflux and reuptake in neurons upon glutamate stimulation in cultured primary neurons. These results demonstrate that KIRIN1 is a valuable tool to detect K+in vitro and in live cells.

2009 ◽  
Vol 187 (4) ◽  
pp. 481-496 ◽  
Author(s):  
David Llères ◽  
John James ◽  
Sam Swift ◽  
David G. Norman ◽  
Angus I. Lamond

We present a quantitative Förster resonance energy transfer (FRET)–based assay using multiphoton fluorescence lifetime imaging microscopy (FLIM) to measure chromatin compaction at the scale of nucleosomal arrays in live cells. The assay uses a human cell line coexpressing histone H2B tagged to either enhanced green fluorescent protein (FP) or mCherry FPs (HeLaH2B-2FP). FRET occurs between FP-tagged histones on separate nucleosomes and is increased when chromatin compacts. Interphase cells consistently show three populations of chromatin with low, medium, or high FRET efficiency, reflecting spatially distinct regions with different levels of chromatin compaction. Treatment with inhibitors that either increase chromatin compaction (i.e., depletion of adenosine triphosphate) or decrease chromosome compaction (trichostatin A) results in a parallel increase or decrease in the FLIM–FRET signal. In mitosis, the assay showed variation in compaction level, as reflected by different FRET efficiency populations, throughout the length of all chromosomes, increasing to a maximum in late anaphase. These data are consistent with extensive higher order folding of chromatin fibers taking place during anaphase.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3019
Author(s):  
Heejung Kim ◽  
Jihye Seong

Autophagy is an essential cellular process of self-degradation for dysfunctional or unnecessary cytosolic constituents and organelles. Dysregulation of autophagy is thus involved in various diseases such as neurodegenerative diseases. To investigate the complex process of autophagy, various biochemical, chemical assays, and imaging methods have been developed. Here we introduce various methods to study autophagy, in particular focusing on the review of designs, principles, and limitations of the fluorescent protein (FP)-based autophagy biosensors. Different physicochemical properties of FPs, such as pH-sensitivity, stability, brightness, spectral profile, and fluorescence resonance energy transfer (FRET), are considered to design autophagy biosensors. These FP-based biosensors allow for sensitive detection and real-time monitoring of autophagy progression in live cells with high spatiotemporal resolution. We also discuss future directions utilizing an optobiochemical strategy to investigate the in-depth mechanisms of autophagy. These cutting-edge technologies will further help us to develop the treatment strategies of autophagy-related diseases.


2021 ◽  
Author(s):  
Y. Bousmah ◽  
H. Valenta ◽  
G. Bertolin ◽  
U. Singh ◽  
V. Nicolas ◽  
...  

AbstractYellow fluorescent proteins (YFP) are widely used as optical reporters in Förster Resonance Energy Transfer (FRET) based biosensors. Although great improvements have been done, the sensitivity of the biosensors is still limited by the low photostability and the poor fluorescence performances of YFPs at acidic pHs. In fact, today, there is no yellow variant derived from the EYFP with a pK1/2 below ∼5.5. Here, we characterize a new yellow fluorescent protein, tdLanYFP, derived from the tetrameric protein from the cephalochordate B. lanceolatum, LanYFP. With a quantum yield of 0.92 and an extinction coefficient of 133 000 mol−1.L.cm−1, it is, to our knowledge, the brightest dimeric fluorescent protein available, and brighter than most of the monomeric YFPs. Contrasting with EYFP and its derivatives, tdLanYFP has a very high photostability in vitro and preserves this property in live cells. As a consequence, tdLanYFP allows the imaging of cellular structures with sub-diffraction resolution with STED nanoscopy. We also demonstrate that the combination of high brightness and strong photostability is compatible with the use of spectro-microscopies in single molecule regimes. Its very low pK1/2 of 3.9 makes tdLanYFP an excellent tag even at acidic pHs. Finally, we show that tdLanYFP can be a FRET partner either as donor or acceptor in different biosensing modalities. Altogether, these assets make tdLanYFPa very attractive yellow fluorescent protein for long-term or single-molecule live-cell imaging that is also suitable for FRET experiment including at acidic pH.


2006 ◽  
Vol 20 (6) ◽  
pp. 1218-1230 ◽  
Author(s):  
Alicja J. Copik ◽  
M. Scott Webb ◽  
Aaron L. Miller ◽  
Yongxin Wang ◽  
Raj Kumar ◽  
...  

Abstract The mechanism through which the glucocorticoid receptor (GR) stimulates transcription is still unclear, although it is clear that the GR affects assembly of the transcriptional machinery. The binding of the TATA-binding protein (TBP) to the TATA-box is accepted as essential in this process. It is known that the GR can interact in vitro with TBP, but the direct interaction of TBP with GR has not been previously characterized quantitatively and has not been appreciated as an important step in assembling the transcriptional complex. Herein, we demonstrate that the TBP-GR interaction is functionally significant by characterizing the association of TBP and GR in vitro by a combination of techniques and confirming the role of this interaction in vivo. Combined analysis, using native gel electrophoresis, sedimentation equilibrium, and isothermal microcalorimetry titrations, characterize the stoichiometry, affinity, and thermodynamics of the TBP-GR interaction. TBP binds recombinant GR activation function 1 (AF1) with a 1:2 stoichiometry and a dissociation constant in the nanomolar range. In vivo fluorescence resonance energy transfer experiments, using fluorescently labeled TBP and various GR constructs, transiently transfected into CV-1 cells, show GR-TBP interactions, dependent on AF1. AF1-deletion variants showed fluorescence resonance energy transfer efficiencies on the level of coexpressed cyan fluorescent protein and yellow fluorescent protein, indicating that the interaction is dependent on AF1 domain. To demonstrate the functional role of the in vivo GR-TBP interaction, increased amounts of TBP expressed in vivo stimulated expression of GR-driven reporters and endogenous genes, and the effect was also specifically dependent on AF1.


2007 ◽  
Vol 176 (1) ◽  
pp. 51-63 ◽  
Author(s):  
Dawen Cai ◽  
Adam D. Hoppe ◽  
Joel A. Swanson ◽  
Kristen J. Verhey

Kinesin motor proteins drive the transport of cellular cargoes along microtubule tracks. How motor protein activity is controlled in cells is unresolved, but it is likely coupled to changes in protein conformation and cargo association. By applying the quantitative method fluorescence resonance energy transfer (FRET) stoichiometry to fluorescent protein (FP)–labeled kinesin heavy chain (KHC) and kinesin light chain (KLC) subunits in live cells, we studied the overall structural organization and conformation of Kinesin-1 in the active and inactive states. Inactive Kinesin-1 molecules are folded and autoinhibited such that the KHC tail blocks the initial interaction of the KHC motor with the microtubule. In addition, in the inactive state, the KHC motor domains are pushed apart by the KLC subunit. Thus, FRET stoichiometry reveals conformational changes of a protein complex in live cells. For Kinesin-1, activation requires a global conformational change that separates the KHC motor and tail domains and a local conformational change that moves the KHC motor domains closer together.


2019 ◽  
Author(s):  
Joshua M. Lorenz-Guertin ◽  
Matthew J. Bambino ◽  
Sabyasachi Das ◽  
Susan T. Weintraub ◽  
Tija C. Jacob

Despite 50+ years of clinical use as anxiolytics, anti-convulsants, and sedative/hypnotic agents, the mechanisms underlying benzodiazepine (BZD) tolerance are poorly understood. BZDs potentiate the actions of gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, through positive allosteric modulation of γ2 subunit containing GABA type A receptors (GABAARs). Here we define key molecular events impacting γ2 GABAAR and the inhibitory synapse gephyrin scaffold following initial sustained BZD exposure in vitro and in vivo. Using immunofluorescence and biochemical experiments, we found that cultured cortical neurons treated with the classical BZD, diazepam (DZP), presented no substantial change in surface or synaptic levels of γ2-GABAARs. In contrast, both γ2 and the postsynaptic scaffolding protein gephyrin showed diminished total protein levels following a single DZP treatment in vitro and in mouse cortical tissue. We further identified DZP treatment enhanced phosphorylation of gephyrin Ser270 and increased generation of gephyrin cleavage products. Selective immunoprecipitation of γ2 from cultured neurons revealed enhanced ubiquitination of this subunit following DZP exposure. To assess novel trafficking responses induced by DZP, we employed a γ2 subunit containing an N terminal fluorogen-activating peptide (FAP) and pH-sensitive green fluorescent protein (γ2pHFAP). Live-imaging experiments using γ2pHFAP GABAAR expressing neurons identified enhanced lysosomal targeting of surface GABAARs and increased overall accumulation in vesicular compartments in response to DZP. Using fluorescence resonance energy transfer (FRET) measurements between γ2 and γ2 subunits within a GABAAR in neurons, we identified reductions in synaptic clusters of this subpopulation of surface BZD sensitive receptor. Moreover, we found DZP simultaneously enhanced synaptic exchange of both γ2-GABAARs and gephyrin using fluorescence recovery after photobleaching (FRAP) techniques. Finally we provide the first proteomic analysis of the BZD sensitive GABAAR interactome in DZP vs. vehicle treated mice. Collectively, our results indicate DZP exposure elicits down-regulation of gephyrin scaffolding and BZD sensitive GABAAR synaptic availability via multiple dynamic trafficking processes.


Sign in / Sign up

Export Citation Format

Share Document