scholarly journals Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells

2007 ◽  
Vol 176 (1) ◽  
pp. 51-63 ◽  
Author(s):  
Dawen Cai ◽  
Adam D. Hoppe ◽  
Joel A. Swanson ◽  
Kristen J. Verhey

Kinesin motor proteins drive the transport of cellular cargoes along microtubule tracks. How motor protein activity is controlled in cells is unresolved, but it is likely coupled to changes in protein conformation and cargo association. By applying the quantitative method fluorescence resonance energy transfer (FRET) stoichiometry to fluorescent protein (FP)–labeled kinesin heavy chain (KHC) and kinesin light chain (KLC) subunits in live cells, we studied the overall structural organization and conformation of Kinesin-1 in the active and inactive states. Inactive Kinesin-1 molecules are folded and autoinhibited such that the KHC tail blocks the initial interaction of the KHC motor with the microtubule. In addition, in the inactive state, the KHC motor domains are pushed apart by the KLC subunit. Thus, FRET stoichiometry reveals conformational changes of a protein complex in live cells. For Kinesin-1, activation requires a global conformational change that separates the KHC motor and tail domains and a local conformational change that moves the KHC motor domains closer together.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3019
Author(s):  
Heejung Kim ◽  
Jihye Seong

Autophagy is an essential cellular process of self-degradation for dysfunctional or unnecessary cytosolic constituents and organelles. Dysregulation of autophagy is thus involved in various diseases such as neurodegenerative diseases. To investigate the complex process of autophagy, various biochemical, chemical assays, and imaging methods have been developed. Here we introduce various methods to study autophagy, in particular focusing on the review of designs, principles, and limitations of the fluorescent protein (FP)-based autophagy biosensors. Different physicochemical properties of FPs, such as pH-sensitivity, stability, brightness, spectral profile, and fluorescence resonance energy transfer (FRET), are considered to design autophagy biosensors. These FP-based biosensors allow for sensitive detection and real-time monitoring of autophagy progression in live cells with high spatiotemporal resolution. We also discuss future directions utilizing an optobiochemical strategy to investigate the in-depth mechanisms of autophagy. These cutting-edge technologies will further help us to develop the treatment strategies of autophagy-related diseases.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3105 ◽  
Author(s):  
Henning Höfig ◽  
Michele Cerminara ◽  
Ilona Ritter ◽  
Antonie Schöne ◽  
Martina Pohl ◽  
...  

Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.


2019 ◽  
Author(s):  
Xiaolong Liu ◽  
Jacob Biboy ◽  
Waldemar Vollmer ◽  
Tanneke den Blaauwen

AbstractRod-shape of most bacteria is maintained by the elongasome, which mediates the synthesis and insertion of peptidoglycan into the cylindrical part of the cell wall. The elongasome contains several essential proteins, such as RodA, PBP2, and the MreBCD proteins, but how its activities are regulated remains poorly understood. Using E. coli as a model system, we investigated the interactions between core elongasome proteins in vivo. Our results show that PBP2 and RodA form a complex mediated by their transmembrane and periplasmic parts and independent of their catalytic activity. MreC and MreD also interact directly with PBP2. MreC elicits a chance in the interaction between PBP2 and RodA, which is suppressed by MreD. The cytoplasmic domain of PBP2 is required for this suppression. We hypothesize that the in vivo measured PBP2-RodA interaction change induced by MreC corresponds to the conformational change in PBP2 as observed in the MreC-PBP2 crystal structure, which was suggested to be the “on state” of PBP2. Our results indicate that the balance between MreC and MreD determines the activity of PBP2, which could open new strategies for antibiotic drug development.ImportanceThe cell envelope of Escherichia coli bears the protective and shape-determining peptidoglycan layer sandwiched between the outer and inner membranes. Length growth in bacteria is accomplished by a protein complex termed elongasome. We used Förster Resonance Energy Transfer (FRET) that reports not only on whether proteins interact with each other but also on conformational changes during interactions, to investigate how the elongasome might be activated. RodA and PBP2 provide the peptidoglycan glycosyltransferase and transpeptidase activities needed to synthesize new peptidolgycan during length growth, respectively, and PBP2 activates RodA. We show that the interactions between MreC and MreD with PBP2-RodA alter the nature of the interaction between PBP2 and RodA and hypothesis that the corresponding conformational change in the PBP2-RodA complex allows switching between the ‘on’ and ‘off’ states of the elongasome.


2016 ◽  
Vol 113 (50) ◽  
pp. 14348-14353 ◽  
Author(s):  
Stephanie Voss ◽  
Dennis M. Krüger ◽  
Oliver Koch ◽  
Yao-Wen Wu

Ras-like small GTPases function as molecular switches and regulate diverse cellular events. To examine the dynamics of signaling requires spatiotemporal visualization of their activity in the cell. Current small GTPase sensors rely on specific effector domains that are available for only a small number of GTPases and compete for endogenous regulator/effector binding. Here, we describe versatile conformational sensors for GTPase activity (COSGAs) based on the conserved GTPase fold. Conformational changes upon GDP/GTP exchange were directly observed in solution, on beads, and in live cells by Förster resonance energy transfer (FRET). The COSGAs allow for monitoring of Rab1 and K-Ras activity in live cells using fluorescence lifetime imaging microscopy. We found that Rab1 is largely active in the cytoplasm and inactive at the Golgi, suggesting that the Golgi serves as the terminal of the Rab1 functional cycle. K-Ras displays polarized activity at the plasma membrane, with less activity at the edge of the cell and membrane ruffles.


2021 ◽  
Vol 7 (21) ◽  
pp. eabe4091
Author(s):  
Brian Tenner ◽  
Jason Z. Zhang ◽  
Yonghoon Kwon ◽  
Veronica Pessino ◽  
Siyu Feng ◽  
...  

Growing evidence suggests that many essential intracellular signaling events are compartmentalized within kinetically distinct microdomains in cells. Genetically encoded fluorescent biosensors are powerful tools to dissect compartmentalized signaling, but current approaches to probe these microdomains typically rely on biosensor fusion and overexpression of critical regulatory elements. Here, we present a novel class of biosensors named FluoSTEPs (fluorescent sensors targeted to endogenous proteins) that combine self-complementing split green fluorescent protein, CRISPR-mediated knock-in, and fluorescence resonance energy transfer biosensor technology to probe compartmentalized signaling dynamics in situ. We designed FluoSTEPs for simultaneously highlighting endogenous microdomains and reporting domain-specific, real-time signaling events including kinase activities, guanosine triphosphatase activation, and second messenger dynamics in live cells. A FluoSTEP for 3′,5′-cyclic adenosine monophosphate (cAMP) revealed distinct cAMP dynamics within clathrin microdomains in response to stimulation of G protein–coupled receptors, showcasing the utility of FluoSTEPs in probing spatiotemporal regulation within endogenous signaling architectures.


1999 ◽  
Vol 5 (S2) ◽  
pp. 1036-1037
Author(s):  
R.Y. Tsien ◽  
A. Miyawaki ◽  
R. Kerr ◽  
G. Baird ◽  
B.A. Griffin ◽  
...  

Interactions between proteins or protein domains can be imaged by fusing them to cyan (CFP) and yellow (YFP) mutants of Green Fluorescent Protein and observing fluorescence resonance energy transfer (FRET). For example, fusions of CFP, calmodulin, a calmodulin-binding peptide, and YFP are transfectable emission-ratioing Ca2+ indicators with many uses. They are highly suitable for twophoton excitation at 770-810 nm, even at video rates. Applications not possible with previous indicators include detection of submicroscopic domains of Ca2+ by fusion of the indicators to key proteins, and dynamic imaging of Ca2+ in transgenic animals. YFPs have been improved as FRET acceptors by reducing their sensitivity to pH changes. Many other applications of GFP mutants to detect fluctuating protein-protein interactions are underway.A synthetic alternative to GFPs for protein tagging arises from the ability of membrane-permeant biarsenical dyes to seek out and light up alpha-helical Cys-Cys-X-X-Cys-Cys motifs placed in recombinant proteins in live cells. The new system is much smaller than GFP (6 residues vs. 238), can label internal domains not just N- and C-terminii, and offers novel readouts (e.g. red emission peaking > 600 nm) and better temporal control of the labeling.


2007 ◽  
Vol 28 (1) ◽  
pp. 201-214 ◽  
Author(s):  
Xinming Cai ◽  
Daniel Lietha ◽  
Derek F. Ceccarelli ◽  
Andrei V. Karginov ◽  
Zenon Rajfur ◽  
...  

ABSTRACT Focal adhesion kinase (FAK) is an essential kinase that regulates developmental processes and functions in the pathology of human disease. An intramolecular autoinhibitory interaction between the FERM and catalytic domains is a major mechanism of regulation. Based upon structural studies, a fluorescence resonance energy transfer (FRET)-based FAK biosensor that discriminates between autoinhibited and active conformations of the kinase was developed. This biosensor was used to probe FAK conformational change in live cells and the mechanism of regulation. The biosensor demonstrates directly that FAK undergoes conformational change in vivo in response to activating stimuli. A conserved FERM domain basic patch is required for this conformational change and for interaction with a novel ligand for FAK, acidic phospholipids. Binding to phosphatidylinositol 4,5-bisphosphate (PIP2)-containing phospholipid vesicles activated and induced conformational change in FAK in vitro, and alteration of PIP2 levels in vivo changed the level of activation of the conformational biosensor. These findings provide direct evidence of conformational regulation of FAK in living cells and novel insight into the mechanism regulating FAK conformation.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Yoon Namkung ◽  
Christian Le Gouill ◽  
Viktoria Lukashova ◽  
Hiroyuki Kobayashi ◽  
Mireille Hogue ◽  
...  

Abstract Endocytosis and intracellular trafficking of receptors are pivotal to maintain physiological functions and drug action; however, robust quantitative approaches are lacking to study such processes in live cells. Here we present new bioluminescence resonance energy transfer (BRET) sensors to quantitatively monitor G protein-coupled receptors (GPCRs) and β-arrestin trafficking. These sensors are based on bystander BRET and use the naturally interacting chromophores luciferase (RLuc) and green fluorescent protein (rGFP) from Renilla. The versatility and robustness of this approach are exemplified by anchoring rGFP at the plasma membrane or in endosomes to generate high dynamic spectrometric BRET signals on ligand-promoted recruitment or sequestration of RLuc-tagged proteins to, or from, specific cell compartments, as well as sensitive subcellular BRET imaging for protein translocation visualization. These sensors are scalable to high-throughput formats and allow quantitative pharmacological studies of GPCR trafficking in real time, in live cells, revealing ligand-dependent biased trafficking of receptor/β-arrestin complexes.


2018 ◽  
Author(s):  
Yi Shen ◽  
Sheng-Yi Wu ◽  
Vladimir Rancic ◽  
Yong Qian ◽  
Shin-Ichiro Miyashita ◽  
...  

AbstractPotassium ion (K+) homeostasis and dynamics play critical roles in regulating various biological activities, and the ability to monitor K+ spatial-temporal dynamics is critical to understanding these biological functions. Here we report the design and characterization of a Förster resonance energy transfer (FRET)-based genetically encoded K+ indicator, KIRIN1, constructed by inserting a bacterial cytosolic K+ binding protein (Kbp) between a fluorescent protein (FP) FRET pair, mCerulean3 and cp173Venus. Binding of K+ induces a conformational change in Kbp, resulting in an increase in FRET efficiency. KIRIN1 was able to detect K+ at physiologically relevant concentrations in vitro and is highly selective toward K+ over Na+. We further demonstrated that KIRIN1 allowed real-time imaging of pharmacologically induced depletion of cytosolic K+ in live cells, and KIRIN1 also enabled optical tracing of K+ efflux and reuptake in neurons upon glutamate stimulation in cultured primary neurons. These results demonstrate that KIRIN1 is a valuable tool to detect K+in vitro and in live cells.


Sign in / Sign up

Export Citation Format

Share Document