scholarly journals Environmentally controlled curvature of single collagen proteins

2018 ◽  
Author(s):  
Naghmeh Rezaei ◽  
Aaron Lyons ◽  
Nancy R. Forde

AbstractThe predominant structural protein in vertebrates is collagen, which plays a key role in extracellular matrix and connective tissue mechanics. Despite its prevalence and physical importance in biology, the mechanical properties of molecular collagen are far from established. The flexibility of its triple helix is unresolved, with descriptions from different experimental techniques ranging from flexible to semirigid. Furthermore, it is unknown how collagen type (homo-vs. heterotrimeric) and source (tissue-derived vs. recombinant) influence flexibility. Using SmarTrace, a chain tracing algorithm we devised, we performed statistical analysis of collagen conformations collected with atomic force microscopy (AFM) to determine the protein’s mechanical properties. Our results show that types I, II and III collagens – the key fibrillar varieties – exhibit molecular flexibilities that are very similar. However, collagen conformations are strongly modulated by salt, transitioning from compact to extended as KCl concentration increases, in both neutral and acidic pH. While analysis with a standard worm-like chain model suggests that the persistence length of collagen can attain almost any value within the literature range, closer inspection reveals that this modulation of collagen’s conformational behaviour is not due to changes in flexibility, but rather arises from the induction of curvature (either intrinsic or induced by interactions with the mica surface). By modifying standard polymer theory to include innate curvature, we show that collagen behaves as an equilibrated curved worm-like chain (cWLC) in two dimensions. Analysis within the cWLC model shows that collagen’s curvature depends strongly on pH and salt, while its persistence length does not. Thus, we find that triple-helical collagen is well described as semiflexible, irrespective of source, type, pH and salt environment. These results demonstrate that collagen is more flexible than its conventional description as a rigid rod, which may have implications for its cellular processing and secretion.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
J. K. Wenderott ◽  
Carmen G. Flesher ◽  
Nicki A. Baker ◽  
Christopher K. Neeley ◽  
Oliver A. Varban ◽  
...  

AbstractObesity-related type 2 diabetes (DM) is a major public health concern. Adipose tissue metabolic dysfunction, including fibrosis, plays a central role in DM pathogenesis. Obesity is associated with changes in adipose tissue extracellular matrix (ECM), but the impact of these changes on adipose tissue mechanics and their role in metabolic disease is poorly defined. This study utilized atomic force microscopy (AFM) to quantify difference in elasticity between human DM and non-diabetic (NDM) visceral adipose tissue. The mean elastic modulus of DM adipose tissue was twice that of NDM adipose tissue (11.50 kPa vs. 4.48 kPa) to a 95% confidence level, with significant variability in elasticity of DM compared to NDM adipose tissue. Histologic and chemical measures of fibrosis revealed increased hydroxyproline content in DM adipose tissue, but no difference in Sirius Red staining between DM and NDM tissues. These findings support the hypothesis that fibrosis, evidenced by increased elastic modulus, is enhanced in DM adipose tissue, and suggest that measures of tissue mechanics may better resolve disease-specific differences in adipose tissue fibrosis compared with histologic measures. These data demonstrate the power of AFM nanoindentation to probe tissue mechanics, and delineate the impact of metabolic disease on the mechanical properties of adipose tissue.


Soft Matter ◽  
2014 ◽  
Vol 10 (48) ◽  
pp. 9721-9728 ◽  
Author(s):  
Binu Kundukad ◽  
Jie Yan ◽  
Patrick S. Doyle

Atomic force microscopy studies show that binding of YOYO-1 to DNA increases the contour length of DNA without affecting the persistence length due to the underwinding of DNA.


2020 ◽  
Author(s):  
Kristen Miller ◽  
Lawrence B. Alemany ◽  
Edwin L. Thomas ◽  
Eilaf Egap

<p>Two-dimensional (2D) benzoxazole-linked covalent organic frameworks (COFs) provide an opportunity to incorporate the strength and modulus of corresponding 1D rigid-rod polymers into multiple directions by extending covalent bonding into two dimensions while simultaneously reducing density. Thus far, this potential has been elusive because of the challenge of producing high-quality COF films, particularly those with irreversible, rigid benzazole linkages. The majority of COF syntheses use a single-step process approach where polymerization occurs faster than crystallization and typically result in a poorly ordered and insoluble powder. Here, we present a one-step synthesis and two-step process that allows the deposition of a uniform intermediate film via reversible, non-covalent interactions. This network then undergoes an annealing step that facilitates the irreversible conversion to 2D covalently-bonded polymer product. The resulting films are semi-crystalline with platelet-like crystals embedded in an amorphous matrix with sharp crystal-amorphous interfaces. By this approach, we achieve free-standing films for which we demonstrate the first example of mechanical testing of benzazole-linked COFs. These initial films have promising mechanical properties with an in-plane ultimate tensile strength of nearly 50 MPa and axial tensile and transverse compressive elastic moduli on the scale of several GPa. These mechanical properties already rival the performance of solution-cast films of 1D polybenzoxazole (PBO).<i></i></p>


2020 ◽  
Author(s):  
Kristen Miller ◽  
Lawrence B. Alemany ◽  
Edwin L. Thomas ◽  
Eilaf Egap

<p>Two-dimensional (2D) benzoxazole-linked covalent organic frameworks (COFs) provide an opportunity to incorporate the strength and modulus of corresponding 1D rigid-rod polymers into multiple directions by extending covalent bonding into two dimensions while simultaneously reducing density. Thus far, this potential has been elusive because of the challenge of producing high-quality COF films, particularly those with irreversible, rigid benzazole linkages. The majority of COF syntheses use a single-step process approach where polymerization occurs faster than crystallization and typically result in a poorly ordered and insoluble powder. Here, we present a one-step synthesis and two-step process that allows the deposition of a uniform intermediate film via reversible, non-covalent interactions. This network then undergoes an annealing step that facilitates the irreversible conversion to 2D covalently-bonded polymer product. The resulting films are semi-crystalline with platelet-like crystals embedded in an amorphous matrix with sharp crystal-amorphous interfaces. By this approach, we achieve free-standing films for which we demonstrate the first example of mechanical testing of benzazole-linked COFs. These initial films have promising mechanical properties with an in-plane ultimate tensile strength of nearly 50 MPa and axial tensile and transverse compressive elastic moduli on the scale of several GPa. These mechanical properties already rival the performance of solution-cast films of 1D polybenzoxazole (PBO).<i></i></p>


1961 ◽  
Vol 58 ◽  
pp. 1072-1077 ◽  
Author(s):  
Frank Stahl
Keyword(s):  

2000 ◽  
Vol 39 (Part 1, No. 6B) ◽  
pp. 3711-3716 ◽  
Author(s):  
Hatsuki Shiga ◽  
Yukako Yamane ◽  
Etsuro Ito ◽  
Kazuhiro Abe ◽  
Kazushige Kawabata ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1661
Author(s):  
Katarzyna Adamiak ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.


2018 ◽  
Vol 114 (3) ◽  
pp. 513a
Author(s):  
Yuri M. Efremov ◽  
Mirian Velay-Lizancos ◽  
Daniel M. Suter ◽  
Pablo D. Zavattieri ◽  
Arvind Raman

Sign in / Sign up

Export Citation Format

Share Document