scholarly journals Enhancing the translational capacity ofE. coliby resolving the codon bias

2018 ◽  
Author(s):  
Zoltan Lipinszki ◽  
Viktor Vernyik ◽  
Nora Farago ◽  
Tobias Sari ◽  
Laszlo G. Puskas ◽  
...  

AbstractEscherichia coliis a well-established, and popular host for heterologous expression of proteins. The preference in the choice of synonymous codons (codon bias), however, might differ for the host and the original source of the recombinant protein, constituting a potential bottleneck in production. Codon choice affects the efficiency of translation by a complex and poorly understood mechanism. The availability of certain tRNA species is one of the factors that may curtail the capacity of translation.Here we provide a tRNA-overexpressing strategy that allows the resolution of the codon bias, and boosts the translational capacity of the popular host BL21(DE3) when rare codons are encountered. In BL21(DE3)-derived strain, called SixPack, copies of the genes corresponding to the six least abundant tRNA species have been assembled in a synthetic fragment and inserted into a ribosomal RNA operon. This arrangement, while not interfering with the growth properties of the new strain, allows dynamic control of the transcription of the extra tRNA genes, providing significantly elevated levels of the rare tRNAs in exponential growth phase.Results from expression assays of a panel of heterologous proteins of diverse origin and codon composition showed that the performance of SixPack surpassed that of the parental BL21(DE3) or a related strain equipped with a rare tRNA-expressing plasmid.ImportanceCodon composition not fitting the codon bias of the expression host frequently compromises the efficient production of foreign proteins inE. coli. Various attempts to remedy the problem (codon optimization by gene synthesis, expression of rare tRNAs from a plasmid) proved to be unsatisfying. Our new approach, adjusting the tRNA pool by co-expressing extra copies of rare tRNA genes with ribosomal RNA genes, does not affect normal cell physiology, and seems to be a superior solution in terms of simplicity, cost, and yield.

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 564
Author(s):  
Supakorn Potijun ◽  
Chonlada Yaisamlee ◽  
Anchalee Sirikhachornkit

Microalgae have long been used for the commercial production of natural colorants such as carotenoids and chlorophyll. Due to the rising demand for carotenoids and other natural products from microalgae, strategies to increase production efficiency are urgently needed. The production of microalgal biorefineries has been limited to countries with moderate climates. For countries with cooler climates and less daylight, methodologies for the efficient production of microalgal biorefineries need to be investigated. Algal strains that can be safely consumed as whole cells are also attractive alternatives for developing as carotenoid supplements, which can also contain other compounds with health benefits. Using such strains helps to eliminate the need for hazardous solvents for extraction and several other complicated steps. In this study, the mesophilic green alga Chlamydomonas reinhardtii was employed to study the effects of cold stress on cell physiology and the production of pigments and storage compounds. The results showed that temperatures between 10 and 20 °C induced carotenoid and chlorophyll accumulation in the wild-type strain of C. reinhardtii. Interestingly, the increased level of carotenoids suggested that they might play a crucial role in cold stress acclimation. A temperature of 15 °C resulted in the highest carotenoid and chlorophyll productivity. At this temperature, carotenoid and chlorophyll productivity was 2 times and 1.3 times higher than at 25 °C, respectively. Subjecting a mutant defective in lutein and zeaxanthin accumulation to cold stress revealed that these two carotenoids are not essential for cold stress survival. Therefore, cold temperature could be used as a strategy to induce and increase the productivity of pigments in C. reinhardtii.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 13-14
Author(s):  
Anna K Goldkamp ◽  
Yahan Li ◽  
Rocio M Rivera ◽  
Darren Hagen

Abstract Differentially methylated regions (DMRs) have been associated with Large Offspring Syndrome (LOS) in cattle. Some DMRs overlap transfer RNA (tRNA) gene clusters, potentially altering tRNA expression patterns uniquely by treatment group or tissue type. tRNAs are classified as adapter molecules, serving a key role in the translational machinery implementing genetic code. Variation in tRNA expression has been identified in several disease pathways suggesting an important role in the regulation of biological processes. tRNAs also serve as a source of small non-coding RNAs. To better understand the role of tRNA expression in LOS, total RNA was extracted from skeletal muscle and liver of 105-day fetuses and the tRNAs sequenced. Although there are nearly three times the number of tRNA genes in cattle as compared to human (1,659 vs 597), there is a shared occurrence of transcriptionally silent tRNA genes in both species. This study detected expression of 474 and 487 bovine tRNA genes in skeletal muscle and liver, respectively, with the remainder being very lowly expressed or transcriptionally silent. Eleven tRNA isodecoders are transcriptionally silent in both skeletal muscle and liver and another isodecoder is silent in the liver (SerGGA). Further, the highest expressed isodecoders differ by treatment or tissue type with roughly half correlated to codon frequency. While the absence of certain isodecoders may be relieved by wobble base pairing, missing tRNA species could likely increase the likelihood of mistranslation or mRNA degradation. Differential expression of tissue- and treatment-specific tRNA genes may modulate translation during protein homeostasis or cellular stress, altering regulatory products targeting genes associated with overgrowth in skeletal muscle and/or tumor development in the liver of LOS individuals.


Zootaxa ◽  
2017 ◽  
Vol 4363 (4) ◽  
pp. 506
Author(s):  
HUAXUAN LIU ◽  
LIYUN YAN ◽  
GUOFANG JIANG

In this study, we reported the complete mitochondrial genome (mitogenome) of Sinopodisma pieli by polymerase chain reaction method for the first time, the type species of the genus Sinopodisma. Its mitogenome was a circular DNA molecule of 15,625 bp in length, with 76.0% A+T, and contained 13 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes and one A+T control region. The overall base composition of the S. pieli mitogenome was 42.8% for A, 33.2% for T, 13.5% for C, and 10.5% for G, respectively. All 13 mitochondrial PCGs shared the start codon ATN. Twelve of the PCGs ended with termination codon TAA and TAG, while cytochrome coxidase subunit 1 (COI) utilized an incomplete T as terminator codon. All tRNA genes could be folded into the typical cloverleaf secondary structure, except trnS(AGN) lacking of dihydrouridine arm. The sizes of the large and small ribosomal RNA genes were 1379 bp and 794 bp, respectively. The A+T rich region was 798 bp in length and contained 88.5% AT content. A phylogenetic analysis based on 13 PCGs by using Bayesian inference (BI) and maximum likelihood (ML) revealed that Sinopodisma is not monophyletic group. We think that the name and taxonomic status of S. tsinlingensis are right, and it should not be moved into the genus Pedopodisma. These data will provide important information for a better understanding of the population genetics and species identification for Sinopodisma. 


2020 ◽  
Vol 86 (3) ◽  
pp. 201-209
Author(s):  
T E Peretolchina ◽  
T Ya Sitnikova ◽  
D Yu Sherbakov

Abstract Here, we present the complete mitochondrial (mt) genomes of four members of the Baicaliidae Fisher, 1885, a truncatelloidean family that is endemic to Lake Baikal (East Siberia). The mt genomes are those of Korotnewia korotnevi (15,171 bp), Godlewskia godlewskii (15,224 bp), Baicalia turriformis (15,127) and Maackia herderiana (15,154 bp). All these mt genomes contain 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes and 22 transfer RNA (tRNA) genes. We detected non-canonical base pairs in some of the tRNA genes and variable numbers of non-coding spacers; some tRNAs do not have a TψC loop. We found gene order to be highly conserved in these Lake Baikal species and similar to the majority of caenogastropod mt genomes available on GenBank. A position of the putative control region is delimited to the non-coding region between trnF and the cox3 gene. It contains the ‘GAA(A)nT’ motif at the 3′ end and is similar to the replication origin found in most Caenogastropoda studied to date. We also compared the evolutionary rates of different genes to evaluate their use in different kinds of population or phylogenetic studies of this group of gastropods.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wenbin Xu ◽  
Boshun Xia ◽  
Xinwei Li

AbstractThe six pinnate-leaved species are a very particular group in the genus Primula. In the present paper, we sequenced, assembled and annotated the chloroplast genomes of five of them (P. cicutarrifolia, P. hubeiensis, P. jiugongshanensis, P. merrilliana, P. ranunculoides). The five chloroplast genomes ranged from ~ 150 to 152 kb, containing 113 genes (four ribosomal RNA genes, 29 tRNA genes and 80 protein-coding genes). The six pinnate-leaved species exhibited synteny of gene order and possessed similar IR boundary regions in chloroplast genomes. The gene accD was pseudogenized in P. filchnerae. In the chloroplast genomes of the six pinnate-leaved Primula species, SSRs, repeating sequences and divergence hotspots were identified; ycf1 and trnH-psbA were the most variable markers among CDSs and noncoding sequences, respectively. Phylogenetic analyses showed that the six Primula species were separated into two distant clades: one was formed by P. filchnerae and P. sinensis and the other clade was consisting of two subclades, one formed by P. hubeiensis and P. ranunculoides, the other by P. merrilliana, P. cicutarrifolia and P. jiugongshanensis. P. hubeiensis was closely related with P. ranunculoides and therefore it should be placed into Sect. Ranunculoides. P. cicutarrifolia did not group first with P. ranunculoides but with P. merrilliana, although the former two were once united in one species, our results supported the separation of P. ranunculoides from P. cicutarrifolia as one distinct species.


Author(s):  
Wojciech Pląder ◽  
Yasushi Yukawa ◽  
Masahiro Sugiura ◽  
Stefan Malepszy

AbstractThe complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.


Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 752-766 ◽  
Author(s):  
Lyda Raquel Castro ◽  
Kalani Ruberu ◽  
Mark Dowton

We sequenced most of the mitochondrial (mt) genomes of 2 apocritan taxa: Vanhornia eucnemidarum and Primeuchroeus spp. These mt genomes have similar nucleotide composition and codon usage to those of mt genomes reported for other Hymenoptera, with a total A + T content of 80.1% and 78.2%, respectively. Gene content corresponds to that of other metazoan mt genomes, but gene organization is not conserved. There are a total of 6 tRNA genes rearranged in V. eucnemidarum and 9 in Primeuchroeus spp. Additionally, several noncoding regions were found in the mt genome of V. eucnemidarum, as well as evidence of a sustained gene duplication involving 3 tRNA genes. We also report an inversion of the large and small ribosomal RNA genes in Primeuchroeus spp. mt genome. However, none of the rearrangements reported are phylogenetically informative with respect to the current taxon sample.Key words: mitochondrial genomes, molecular evolution, hymenoptera.


1996 ◽  
Vol 142 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Martin Sievers ◽  
Lorenzo Alonso ◽  
Sabine Gianotti ◽  
Cornelia Boesch ◽  
Michael Teuber

Sign in / Sign up

Export Citation Format

Share Document