scholarly journals scQuery: a web server for comparative analysis of single-cell RNA-seq data

2018 ◽  
Author(s):  
Amir Alavi ◽  
Matthew Ruffalo ◽  
Aiyappa Parvangada ◽  
Zhilin Huang ◽  
Ziv Bar-Joseph

SummarySingle cell RNA-Seq (scRNA-seq) studies often profile upward of thousands of cells in heterogeneous environments. Current methods for characterizing cells perform unsupervised analysis followed by assignment using a small set of known marker genes. Such approaches are limited to a few, well characterized cell types. To enable large scale supervised characterization we developed an automated pipeline to download, process, and annotate publicly available scRNA-seq datasets. We extended supervised neural networks to obtain efficient and accurate representations for scRNA-seq data. We applied our pipeline to analyze data from over 500 different studies with over 300 unique cell types and show that supervised methods greatly outperform unsupervised methods for cell type identification. A case study of neural degeneration data highlights the ability of these methods to identify differences between cell type distributions in healthy and diseased mice. We implemented a web server that compares new datasets to collected data employing fast matching methods in order to determine cell types, key genes, similar prior studies, and more.

2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Qingnan Liang ◽  
Rachayata Dharmat ◽  
Leah Owen ◽  
Akbar Shakoor ◽  
Yumei Li ◽  
...  

AbstractSingle-cell RNA-seq is a powerful tool in decoding the heterogeneity in complex tissues by generating transcriptomic profiles of the individual cell. Here, we report a single-nuclei RNA-seq (snRNA-seq) transcriptomic study on human retinal tissue, which is composed of multiple cell types with distinct functions. Six samples from three healthy donors are profiled and high-quality RNA-seq data is obtained for 5873 single nuclei. All major retinal cell types are observed and marker genes for each cell type are identified. The gene expression of the macular and peripheral retina is compared to each other at cell-type level. Furthermore, our dataset shows an improved power for prioritizing genes associated with human retinal diseases compared to both mouse single-cell RNA-seq and human bulk RNA-seq results. In conclusion, we demonstrate that obtaining single cell transcriptomes from human frozen tissues can provide insight missed by either human bulk RNA-seq or animal models.


2021 ◽  
Author(s):  
Wenjing Ma ◽  
Sumeet Sharma ◽  
Peng Jin ◽  
Shannon L Gourley ◽  
Zhaohui Qin

The rapid proliferation of single-cell RNA-sequencing (scRNA-seq) datasets have revealed cell heterogeneity at unprecedented scales. Several deconvolution methods have been developed to decompose bulk experiments to reveal cell type contributions. However, these methods lack power in identifying the accurate cell type composition when having a considerable amount of sub-cell types in the reference dataset. Here, we present LRcell, a R Bioconductor package (http://bioconductor.org/packages/release/bioc/html/LRcell.html) aiming to identify specific sub-cell type(s) that drives the changes observed in a bulk RNA-seq differential gene expression experiment. In addition, LRcell provides pre-embedded marker genes computed from putative single-cell RNA-seq experiments as options to execute the analyses.


2018 ◽  
Author(s):  
Nikos Konstantinides ◽  
Katarina Kapuralin ◽  
Chaimaa Fadil ◽  
Luendreo Barboza ◽  
Rahul Satija ◽  
...  

SummaryTranscription factors regulate the molecular, morphological, and physiological characters of neurons and generate their impressive cell type diversity. To gain insight into general principles that govern how transcription factors regulate cell type diversity, we used large-scale single-cell mRNA sequencing to characterize the extensive cellular diversity in the Drosophila optic lobes. We sequenced 55,000 single optic lobe neurons and glia and assigned them to 52 clusters of transcriptionally distinct single cells. We validated the clustering and annotated many of the clusters using RNA sequencing of characterized FACS-sorted single cell types, as well as marker genes specific to given clusters. To identify transcription factors responsible for inducing specific terminal differentiation features, we used machine-learning to generate a ‘random forest’ model. The predictive power of the model was confirmed by showing that two transcription factors expressed specifically in cholinergic (apterous) and glutamatergic (traffic-jam) neurons are necessary for the expression of ChAT and VGlut in many, but not all, cholinergic or glutamatergic neurons, respectively. We used a transcriptome-wide approach to show that the same terminal characters, including but not restricted to neurotransmitter identity, can be regulated by different transcription factors in different cell types, arguing for extensive phenotypic convergence. Our data provide a deep understanding of the developmental and functional specification of a complex brain structure.


2017 ◽  
Author(s):  
Megan Crow ◽  
Anirban Paul ◽  
Sara Ballouz ◽  
Z. Josh Huang ◽  
Jesse Gillis

AbstractSingle cell RNA-sequencing technology (scRNA-seq) provides a new avenue to discover and characterize cell types, but the experiment-specific technical biases and analytic variability inherent to current pipelines may undermine the replicability of these studies. Meta-analysis of rapidly accumulating data is further hampered by the use of ad hoc naming conventions. Here we demonstrate our replication framework, MetaNeighbor, that allows researchers to quantify the degree to which cell types replicate across datasets, and to rapidly identify clusters with high similarity for further testing. We first measure the replicability of neuronal identity by comparing more than 13 thousand individual scRNA-seq transcriptomes, sampling with high specificity from within the data to define a range of robust practices. We then assess cross-dataset evidence for novel cortical interneuron subtypes identified by scRNA-seq and find that 24/45 cortical interneuron subtypes have evidence of replication in at least one other study. Identifying these putative replicates allows us to re-analyze the data for differential expression and provide lists of robust candidate marker genes. Across tasks we find that large sets of variably expressed genes can identify replicable cell types and subtypes with high accuracy, suggesting a general route forward for large-scale evaluation of scRNA-seq data.


2022 ◽  
Author(s):  
Chenfei Wang ◽  
Pengfei Ren ◽  
Xiaoying Shi ◽  
Xin Dong ◽  
Zhiguang Yu ◽  
...  

Abstract The rapid accumulation of single-cell RNA-seq data has provided rich resources to characterize various human cell types. Cell type annotation is the critical step in analyzing single-cell RNA-seq data. However, accurate cell type annotation based on public references is challenging due to the inconsistent annotations, batch effects, and poor characterization of rare cell types. Here, we introduce SELINA (single cELl identity NAvigator), an integrative annotation transferring framework for automatic cell type annotation. SELINA optimizes the annotation for minority cell types by synthetic minority over-sampling, removes batch effects among reference datasets using a multiple-adversarial domain adaptation network (MADA), and fits the query data with reference data using an autoencoder. Finally, SELINA affords a comprehensive and uniform reference atlas with 1.7 million cells covering 230 major human cell types. We demonstrated the robustness and superiority of SELINA in most human tissues compared to existing methods. SELINA provided a one-stop solution for human single- cell RNA-seq data annotation with the potential to extend for other species.


2019 ◽  
Vol 36 (8) ◽  
pp. 2474-2485 ◽  
Author(s):  
Zhanying Feng ◽  
Xianwen Ren ◽  
Yuan Fang ◽  
Yining Yin ◽  
Chutian Huang ◽  
...  

Abstract Motivation Single cell RNA-seq data offers us new resource and resolution to study cell type identity and its conversion. However, data analyses are challenging in dealing with noise, sparsity and poor annotation at single cell resolution. Detecting cell-type-indicative markers is promising to help denoising, clustering and cell type annotation. Results We developed a new method, scTIM, to reveal cell-type-indicative markers. scTIM is based on a multi-objective optimization framework to simultaneously maximize gene specificity by considering gene-cell relationship, maximize gene’s ability to reconstruct cell–cell relationship and minimize gene redundancy by considering gene–gene relationship. Furthermore, consensus optimization is introduced for robust solution. Experimental results on three diverse single cell RNA-seq datasets show scTIM’s advantages in identifying cell types (clustering), annotating cell types and reconstructing cell development trajectory. Applying scTIM to the large-scale mouse cell atlas data identifies critical markers for 15 tissues as ‘mouse cell marker atlas’, which allows us to investigate identities of different tissues and subtle cell types within a tissue. scTIM will serve as a useful method for single cell RNA-seq data mining. Availability and implementation scTIM is freely available at https://github.com/Frank-Orwell/scTIM. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Hananeh Aliee ◽  
Fabian Theis

AbstractTissues are complex systems of interacting cell types. Knowing cell-type proportions in a tissue is very important to identify which cells or cell types are targeted by a disease or perturbation. When measuring such responses using RNA-seq, bulk RNA-seq masks cellular heterogeneity. Hence, several computational methods have been proposed to infer cell-type proportions from bulk RNA samples. Their performance with noisy reference profiles highly depends on the set of genes undergoing deconvolution. These genes are often selected based on prior knowledge or a single-criterion test that might not be useful to dissect closely correlated cell types. In this work, we introduce AutoGeneS, a tool that automatically extracts informative genes and reveals the cellular heterogeneity of bulk RNA samples. AutoGeneS requires no prior knowledge about marker genes and selects genes by simultaneously optimizing multiple criteria: minimizing the correlation and maximizing the distance between cell types. It can be applied to reference profiles from various sources like single-cell experiments or sorted cell populations. Results from human samples of peripheral blood illustrate that AutoGeneS outperforms other methods. Our results also highlight the impact of our approach on analyzing bulk RNA samples with noisy single-cell reference profiles and closely correlated cell types. Ground truth cell proportions analyzed by flow cytometry confirmed the accuracy of the predictions of AutoGeneS in identifying cell-type proportions. AutoGeneS is available for use via a standalone Python package (https://github.com/theislab/AutoGeneS).


2020 ◽  
Vol 36 (12) ◽  
pp. 3910-3912 ◽  
Author(s):  
Oscar Franzén ◽  
Johan L M Björkegren

Abstract Summary Single-cell RNA sequencing (scRNA-seq) is a technology to measure gene expression in single cells. It has enabled discovery of new cell types and established cell type atlases of tissues and organs. The widespread adoption of scRNA-seq has created a need for user-friendly software for data analysis. We have developed a web server, alona that incorporates several of the most popular single-cell analysis algorithms into a flexible pipeline. alona can perform quality filtering, normalization, batch correction, clustering, cell type annotation and differential gene expression analysis. Data are visualized in the web browser using an interface based on JavaScript, allowing the user to query genes of interest and visualize the cluster structure. alona accepts a compressed gene expression matrix and identifies cell clusters with a graph-based clustering strategy. Cell types are identified from a comprehensive collection of marker genes or by specifying a custom set of marker genes. Availability and implementation The service runs at https://alona.panglaodb.se and the Python package can be downloaded from https://oscar-franzen.github.io/adobo/. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Brandon Jew ◽  
Marcus Alvarez ◽  
Elior Rahmani ◽  
Zong Miao ◽  
Arthur Ko ◽  
...  

AbstractWe present Bisque, a tool for estimating cell type proportions in bulk expression. Bisque implements a regression-based approach that utilizes single-cell RNA-seq (scRNA-seq) data to generate a reference expression profile and learn gene-specific bulk expression transformations to robustly decompose RNA-seq data. These transformations significantly improve decomposition performance compared to existing methods when there is significant technical variation in the generation of the reference profile and observed bulk expression. Importantly, compared to existing methods, our approach is extremely efficient, making it suitable for the analysis of large genomic datasets that are becoming ubiquitous. When applied to subcutaneous adipose and dorsolateral prefrontal cortex expression datasets with both bulk RNA-seq and single-nucleus RNA-seq (snRNA-seq) data, Bisque was able to replicate previously reported associations between cell type proportions and measured phenotypes across abundant and rare cell types. Bisque requires a single-cell reference dataset that reflects physiological cell type composition and can further leverage datasets that includes both bulk and single cell measurements over the same samples for improved accuracy. We further propose an additional mode of operation that merely requires a set of known marker genes. Bisque is available as an R package at: https://github.com/cozygene/bisque.


Sign in / Sign up

Export Citation Format

Share Document