scholarly journals De novo assembly of a young Drosophila Y chromosome using Single-Molecule sequencing and Chromatin Conformation capture

2018 ◽  
Author(s):  
Shivani Mahajan ◽  
Kevin Wei ◽  
Matthew Nalley ◽  
Lauren Giblisco ◽  
Doris Bachtrog

While short-read sequencing technology has resulted in a sharp increase in the number of species with genome assemblies, these assemblies are typically highly fragmented. Repeats pose the largest challenge for reference genome assembly, and pericentromeric regions and the repeat-rich Y chromosome are typically ignored from sequencing projects. Here, we assemble the genome of Drosophila miranda using long reads for contig formation, chromatin interaction maps for scaffolding and short reads, optical mapping and BAC clone sequencing for consensus validation. Our assembly recovers entire chromosomes and contains large fractions of repetitive DNA, including ~41.5 Mb of pericentromeric and telomeric regions, and >100Mb of the recently formed highly repetitive neo-Y chromosome. While Y chromosome evolution is typically characterized by global sequence loss and shrinkage, the neo-Y increased in size by almost 3-fold, due to the accumulation of repetitive sequences. Our high-quality assembly allows us to reconstruct the chromosomal events that have led to the unusual sex chromosome karyotype in D. miranda, including the independent de novo formation of a pair of sex chromosomes at two distinct time points, or the reversion of a former Y chromosome to an autosome.


2016 ◽  
Author(s):  
Derek M. Bickhart ◽  
Benjamin D. Rosen ◽  
Sergey Koren ◽  
Brian L. Sayre ◽  
Alex R. Hastie ◽  
...  

AbstractThe decrease in sequencing cost and increased sophistication of assembly algorithms for short-read platforms has resulted in a sharp increase in the number of species with genome assemblies. However, these assemblies are highly fragmented, with many gaps, ambiguities, and errors, impeding downstream applications. We demonstrate current state of the art for de novo assembly using the domestic goat (Capra hircus), based on long reads for contig formation, short reads for consensus validation, and scaffolding by optical and chromatin interaction mapping. These combined technologies produced the most contiguous de novo mammalian assembly to date, with chromosome-length scaffolds and only 663 gaps. Our assembly represents a >250-fold improvement in contiguity compared to the previously published C. hircus assembly, and better resolves repetitive structures longer than 1 kb, supporting the most complete repeat family and immune gene complex representation ever produced for a ruminant species.



2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Huilong Du ◽  
Chengzhi Liang

AbstractThe abundant repetitive sequences in complex eukaryotic genomes cause fragmented assemblies, which lose value as reference genomes, often due to incomplete gene sequences and unanchored or mispositioned contigs on chromosomes. Here we report a genome assembly method HERA, which resolves repeats efficiently by constructing a connection graph from an overlap graph. We test HERA on the genomes of rice, maize, human, and Tartary buckwheat with single-molecule sequencing and mapping data. HERA correctly assembles most of the previously unassembled regions, resulting in dramatically improved, highly contiguous genome assemblies with newly assembled gene sequences. For example, the maize contig N50 size reaches 61.2 Mb and the Tartary buckwheat genome comprises only 20 contigs. HERA can also be used to fill gaps and fix errors in reference genomes. The application of HERA will greatly improve the quality of new or existing assemblies of complex genomes.



Author(s):  
Pedro Almeida ◽  
Benjamin A. Sandkam ◽  
Jake Morris ◽  
Iulia Darolti ◽  
Felix Breden ◽  
...  

AbstractThe guppy sex chromosomes show an extraordinary diversity in divergence across populations and closely related species. In order to understand the dynamics of the guppy Y chromosome, we used linked-read sequencing to assess Y chromosome evolution and diversity across upstream and downstream population pairs that vary in predator and food abundance in three replicate watersheds. Based on our population-specific genome assemblies, we first confirmed and extended earlier reports of two strata on the guppy sex chromosomes. Stratum I shows significant accumulation of male-specific sequence, consistent with Y divergence, and predates the colonization of Trinidad. In contrast, Stratum II shows divergence from the X, but no Y-specific sequence, and this divergence is greater in three replicate upstream populations compared to their downstream pair. Despite longstanding assumptions that sex chromosome recombination suppression is achieved through inversions, we find no evidence of inversions associated with either Stratum I or Stratum II. Instead, we observe a remarkable diversity in Y chromosome haplotypes within each population, even in the ancestral Stratum I. This diversity is likely due to gradual mechanisms of recombination suppression, which, unlike an inversion, allow for the maintenance of multiple haplotypes. In addition, we show that this Y diversity is dominated by low-frequency haplotypes segregating in the population, suggesting a link between haplotype diversity and female-preference for rare Y-linked colour variation. Our results reveal the complex interplay between recombination suppression and Y chromosome divergence at the earliest stages of sex chromosome divergence.



2017 ◽  
Author(s):  
Emily J. Shields ◽  
Roberto Bonasio

ABSTRACTAnts are an emerging model system for neuroepigenetics, as embryos with virtually identical genomes develop into different adult castes that display strikingly different physiology, morphology, and behavior. Although a number of ant genomes have been sequenced to date, their draft quality is an obstacle to sophisticated analyses of epigenetic gene regulation. Using long reads generated with Pacific Biosystem single molecule real time sequencing, we have reassembled de novo high-quality genomes for two ant species: Camponotus floridanus and Harpegnathos saltator. The long reads allowed us to span large repetitive regions and join sequences previously found in separate scaffolds, leading to comprehensive and accurate protein-coding annotations that facilitated the identification of a Gp-9-like gene as differentially expressed in Harpegnathos castes. The new assemblies also enabled us to annotate long non-coding RNAs for the first time in ants, revealing several that were specifically expressed during Harpegnathos development and in the brains of different castes. These upgraded genomes, along with the new coding and non-coding annotations, will aid future efforts to identify epigenetic mechanisms of phenotypic and behavioral plasticity in ants.



2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jean-Marc Aury ◽  
Benjamin Istace

Abstract Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and completeness of repetitive regions. However, the error rate of long-read technologies is higher than that of short-read technologies. This has a direct consequence on the base quality of genome assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the two haplotypes and can lead to premature stop codons. Several methods have been developed to polish genome assemblies using short reads and generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are not able to properly process diploid genomes and they typically switch from one haplotype to another. Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of incorporating phasing information from high-quality reads (short or long-reads) to polish genome assemblies and in particular assemblies of diploid and heterozygous genomes.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zev N. Kronenberg ◽  
Arang Rhie ◽  
Sergey Koren ◽  
Gregory T. Concepcion ◽  
Paul Peluso ◽  
...  

AbstractHaplotype-resolved genome assemblies are important for understanding how combinations of variants impact phenotypes. To date, these assemblies have been best created with complex protocols, such as cultured cells that contain a single-haplotype (haploid) genome, single cells where haplotypes are separated, or co-sequencing of parental genomes in a trio-based approach. These approaches are impractical in most situations. To address this issue, we present FALCON-Phase, a phasing tool that uses ultra-long-range Hi-C chromatin interaction data to extend phase blocks of partially-phased diploid assembles to chromosome or scaffold scale. FALCON-Phase uses the inherent phasing information in Hi-C reads, skipping variant calling, and reduces the computational complexity of phasing. Our method is validated on three benchmark datasets generated as part of the Vertebrate Genomes Project (VGP), including human, cow, and zebra finch, for which high-quality, fully haplotype-resolved assemblies are available using the trio-based approach. FALCON-Phase is accurate without having parental data and performance is better in samples with higher heterozygosity. For cow and zebra finch the accuracy is 97% compared to 80–91% for human. FALCON-Phase is applicable to any draft assembly that contains long primary contigs and phased associate contigs.



Author(s):  
Valentina Peona ◽  
Mozes P.K. Blom ◽  
Luohao Xu ◽  
Reto Burri ◽  
Shawn Sullivan ◽  
...  

AbstractGenome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies have opened up a whole new world of genomic biodiversity. Although these technologies generate high-quality genome assemblies, there are still genomic regions difficult to assemble, like repetitive elements and GC-rich regions (genomic “dark matter”). In this study, we compare the efficiency of currently used sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations thereof in assembling genomic dark matter starting from the same sample. By adopting different de-novo assembly strategies, we were able to compare each individual draft assembly to a curated multiplatform one and identify the nature of the previously missing dark matter with a particular focus on transposable elements, multi-copy MHC genes, and GC-rich regions. Thanks to this multiplatform approach, we demonstrate the feasibility of producing a high-quality chromosome-level assembly for a non-model organism (paradise crow) for which only suboptimal samples are available. Our approach was able to reconstruct complex chromosomes like the repeat-rich W sex chromosome and several GC-rich microchromosomes. Telomere-to-telomere assemblies are not a reality yet for most organisms, but by leveraging technology choice it is possible to minimize genome assembly gaps for downstream analysis. We provide a roadmap to tailor sequencing projects around the completeness of both the coding and non-coding parts of the genomes.



2021 ◽  
Author(s):  
Anna Köferle ◽  
Andreas Schlattl ◽  
Alexandra Hörmann ◽  
Fiona Spreitzer ◽  
Alexandra M. Popa ◽  
...  

Genetic networks are characterized by extensive buffering. During tumour evolution, disruption of these functional redundancies can create de novo vulnerabilities that are specific to cancer cells. In this regard, paralog genes are of particular interest, as the loss of one paralog gene can render tumour cells dependent on a remaining paralog. To systematically identify cancer-relevant paralog dependencies, we searched for candidate dependencies using CRISPR screens and publicly available loss-of-function datasets. Our analysis revealed >2,000 potential candidate dependencies, several of which were subsequently experimentally validated. We provide evidence that DNAJC15-DNAJC19, FAM50A-FAM50B and RPP25-RPP25L are novel cancer relevant paralog dependencies. Importantly, our analysis also revealed unexpected redundancies between sex chromosome genes. We show that chrX- and chrY- encoded paralogs, as exemplified by ZFX-ZFY, DDX3X-DDX3Y and EIF1AX-EIF1AY, are functionally linked so that tumour cell lines from male patients with Y-chromosome loss become exquisitely dependent on the chrX-encoded gene. We therefore propose genetic redundancies between chrX- and chrY- encoded paralogs as a general therapeutic strategy for human tumours that have lost the Y-chromosome.



2021 ◽  
Author(s):  
Anne-Laure Ferchaud ◽  
Claire Merot ◽  
Eric Normandeau ◽  
Ioannis Ragoussis ◽  
Charles Babin ◽  
...  

Despite the commercial importance of Greenland Halibut (Reinhardtius hippoglossoides), important gaps still persist in our knowledge of this species, including its reproductive biology and sex determination mechanism. In this study, we combined single molecule sequencing of long reads (Pacific Sciences) with Chromatin Conformation Capture sequencing (Hi-C) data to provide the first chromosome-level genome reference for this species. The high-quality assembly encompassed more than 598 Megabases (Mb) assigned to 1 594 scaffolds (scaffold N50 = 25 Mb) with 96 % of its total length distributed among 24 chromosomes. The investigation of its syntenic relationships with other economically important flatfish species revealed a high conservation of synteny blocks among members of this phylogenetic clade. Sex determination analysis revealed that flatfishes do not escape the rule applied to other teleost fish and exhibit a high level of plasticity and turnover in sex-determination mechanisms. A whole-genome sequence analysis of 198 individuals allowed us to draw a full picture of the molecular sex determination (SD) system for Greenland Halibut, revealing that this species possesses a very nascent male heterogametic XY system, with a putative major effect of the sox2 gene, also described as the main SD driver in two other flatfishes. Interestingly, our study also suggested for the first time in flatfishes that a putative Y-autosomal fusion could be associated with a reduction of recombination typical of early steps of sex chromosome evolution.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Joseph R. Fauver ◽  
John Martin ◽  
Gary J. Weil ◽  
Makedonka Mitreva ◽  
Peter U. Fischer

AbstractFilarial nematode infections cause a substantial global disease burden. Genomic studies of filarial worms can improve our understanding of their biology and epidemiology. However, genomic information from field isolates is limited and available reference genomes are often discontinuous. Single molecule sequencing technologies can reduce the cost of genome sequencing and long reads produced from these devices can improve the contiguity and completeness of genome assemblies. In addition, these new technologies can make generation and analysis of large numbers of field isolates feasible. In this study, we assessed the performance of the Oxford Nanopore Technologies MinION for sequencing and assembling the genome of Brugia malayi, a human parasite widely used in filariasis research. Using data from a single MinION flowcell, a 90.3 Mb nuclear genome was assembled into 202 contigs with an N50 of 2.4 Mb. This assembly covered 96.9% of the well-defined B. malayi reference genome with 99.2% identity. The complete mitochondrial genome was obtained with individual reads and the nearly complete genome of the endosymbiotic bacteria Wolbachia was assembled alongside the nuclear genome. Long-read data from the MinION produced an assembly that approached the quality of a well-established reference genome using comparably fewer resources.



Sign in / Sign up

Export Citation Format

Share Document