paralog gene
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 0)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009794
Author(s):  
Stefano Suzzi ◽  
Reiner Ahrendt ◽  
Stefan Hans ◽  
Svetlana A. Semenova ◽  
Avinash Chekuru ◽  
...  

LRRK2 gain-of-function is considered a major cause of Parkinson’s disease (PD) in humans. However, pathogenicity of LRRK2 loss-of-function in animal models is controversial. Here we show that deletion of the entire zebrafish lrrk2 locus elicits a pleomorphic transient brain phenotype in maternal-zygotic mutant embryos (mzLrrk2). In contrast to lrrk2, the paralog gene lrrk1 is virtually not expressed in the brain of both wild-type and mzLrrk2 fish at different developmental stages. Notably, we found reduced catecholaminergic neurons, the main target of PD, in specific cell populations in the brains of mzLrrk2 larvae, but not adult fish. Strikingly, age-dependent accumulation of monoamine oxidase (MAO)-dependent catabolic signatures within mzLrrk2 brains revealed a previously undescribed interaction between LRRK2 and MAO biological activities. Our results highlight mzLrrk2 zebrafish as a tractable tool to study LRRK2 loss-of-function in vivo, and suggest a link between LRRK2 and MAO, potentially of relevance in the prodromic stages of PD.


2021 ◽  
Author(s):  
Anna Köferle ◽  
Andreas Schlattl ◽  
Alexandra Hörmann ◽  
Fiona Spreitzer ◽  
Alexandra M. Popa ◽  
...  

Genetic networks are characterized by extensive buffering. During tumour evolution, disruption of these functional redundancies can create de novo vulnerabilities that are specific to cancer cells. In this regard, paralog genes are of particular interest, as the loss of one paralog gene can render tumour cells dependent on a remaining paralog. To systematically identify cancer-relevant paralog dependencies, we searched for candidate dependencies using CRISPR screens and publicly available loss-of-function datasets. Our analysis revealed >2,000 potential candidate dependencies, several of which were subsequently experimentally validated. We provide evidence that DNAJC15-DNAJC19, FAM50A-FAM50B and RPP25-RPP25L are novel cancer relevant paralog dependencies. Importantly, our analysis also revealed unexpected redundancies between sex chromosome genes. We show that chrX- and chrY- encoded paralogs, as exemplified by ZFX-ZFY, DDX3X-DDX3Y and EIF1AX-EIF1AY, are functionally linked so that tumour cell lines from male patients with Y-chromosome loss become exquisitely dependent on the chrX-encoded gene. We therefore propose genetic redundancies between chrX- and chrY- encoded paralogs as a general therapeutic strategy for human tumours that have lost the Y-chromosome.


2021 ◽  
Vol 2 ◽  
Author(s):  
Benjamin M. Heineike ◽  
Hana El-Samad

Functional divergence of duplicate genes, or paralogs, is an important driver of novelty in evolution. In the model yeast Saccharomyces cerevisiae, there are 547 paralog gene pairs that survive from an interspecies Whole Genome Hybridization (WGH) that occurred ~100MYA. In this work, we report that ~1/6th (110) of these WGH paralogs pairs (or ohnologs) are differentially expressed with a striking pattern upon Protein Kinase A (PKA) inhibition. One member of each pair in this group has low basal expression that increases upon PKA inhibition, while the other has moderate and unchanging expression. For these genes, expression of orthologs upon PKA inhibition in the non-WGH species Kluyveromyces lactis and for PKA-related stresses in other budding yeasts shows unchanging expression, suggesting that lack of responsiveness to PKA was likely the typical ancestral phenotype prior to duplication. Promoter sequence analysis across related budding yeast species further revealed that the subsequent emergence of PKA-dependence took different evolutionary routes. In some examples, regulation by PKA and differential expression appears to have arisen following the WGH, while in others, regulation by PKA appears to have arisen in one of the two parental lineages prior to the WGH. More broadly, our results illustrate the unique opportunities presented by a WGH event for generating functional divergence by bringing together two parental lineages with separately evolved regulation into one species. We propose that functional divergence of two ohnologs can be facilitated through such regulatory divergence.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Russell Y. Neches ◽  
Nikos C. Kyrpides ◽  
Christos A. Ouzounis

ABSTRACT Orf8, one of the most puzzling genes in the SARS lineage of coronaviruses, marks a unique and striking difference in genome organization between SARS-CoV-2 and SARS-CoV-1. Here, using sequence comparisons, we unequivocally reveal the distant sequence similarities between SARS-CoV-2 Orf8 with its SARS-CoV-1 counterparts and the X4-like genes of coronaviruses, including its highly divergent “paralog” gene Orf7a, whose product is a potential immune antagonist of known structure. Supervised sequence space walks unravel identity levels that drop below 10% and yet exhibit subtle conservation patterns in this novel superfamily, characterized by an immunoglobulin-like beta sandwich topology. We document the high accuracy of the sequence space walk process in detail and characterize the subgroups of the superfamily in sequence space by systematic annotation of gene and taxon groups. While SARS-CoV-1 Orf7a and Orf8 genes are most similar to bat virus sequences, their SARS-CoV-2 counterparts are closer to pangolin virus homologs, reflecting the fine structure of conservation patterns within the SARS-CoV-2 genomes. The divergence between Orf7a and Orf8 is exceptionally idiosyncratic, since Orf7a is more constrained, whereas Orf8 is subject to rampant change, a peculiar feature that may be related to hitherto-unknown viral infection strategies. Despite their common origin, the Orf7a and Orf8 protein families exhibit different modes of evolutionary trajectories within the coronavirus lineage, which might be partly attributable to their complex interactions with the mammalian host cell, reflected by a multitude of functional associations of Orf8 in SARS-CoV-2 compared to a very small number of interactions discovered for Orf7a. IMPORTANCE Orf8 is one of the most puzzling genes in the SARS lineage of coronaviruses, including SARS-CoV-2. Using sophisticated sequence comparisons, we confirm its origins from Orf7a, another gene in the lineage that appears as more conserved, compared to Orf8. Orf7a is a potential immune antagonist of known structure, while a deletion of Orf8 was shown to decrease the severity of the infection in a cohort study. The subtle sequence similarities imply that Orf8 has the same immunoglobulin-like fold as Orf7a, confirmed by structure determination. We characterize the subgroups of this superfamily and demonstrate the highly idiosyncratic divergence patterns during the evolution of the virus.


2019 ◽  
Author(s):  
Benjamin Murray Heineike ◽  
Hana El-Samad

AbstractFunctional divergence of duplicate genes, or paralogs, is an important driver of novelty in evolution. In the model yeast Saccharomyces cerevisiae, there are 547 paralog gene pairs that survive from an interspecies Whole Genome Hybridization (WGH) that occurred ∼100MYA. Many WGH paralogs (or ohnologs) are known to have differential expression during the yeast Environmental Stress Response (ESR), of which Protein Kinase A (PKA) is a major regulator. While investigating the transcriptional response to PKA inhibition in S. cerevisiae, we discovered that approximately 1/6th (91) of all ohnolog pairs were differentially expressed with a striking pattern. One member of each pair tended to have low basal expression that increased upon PKA inhibition, while the other tended to have high but unchanging expression. Examination of PKA inhibition data in the pre-WGH species K. lactis and PKA-related stresses in other budding yeasts indicated that unchanging expression in response to PKA inhibition is likely to be the ancestral phenotype prior to duplication. Analysis of promoter sequences of orthologs of gene pairs that are differentially expressed in S. cerevisiae further revealed that the emergence of PKA-dependence took different evolutionary routes. In some examples, regulation by PKA and differential expression appears to have arisen following the WGH, while in others, regulation by PKA appears to have arisen in one of the two parental lineages prior to the WGH. More broadly, our results illustrate the unique opportunities presented by a WGH event for generating functional divergence by bringing together two parental lineages with separately evolved regulation into one species. We propose that functional divergence of two ohnologs can be facilitated through such regulatory divergence, which can persist even when functional differences are erased by gene conversion.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5506 ◽  
Author(s):  
Michael Tessler ◽  
Jean P. Gaffney ◽  
Jason M. Crawford ◽  
Eric Trautman ◽  
Nehaben A. Gujarati ◽  
...  

Bioluminescent copepods are often the most abundant marine zooplankton and play critical roles in oceanic food webs. Metridia copepods exhibit particularly bright bioluminescence, and the molecular basis of their light production has just recently begun to be explored. Here we add to this body of work by transcriptomically profiling Metridia lucens, a common species found in temperate, northern, and southern latitudes. In this previously molecularly-uncharacterized species, we find the typical luciferase paralog gene set found in Metridia. More surprisingly, we recover noteworthy putative luciferase sequences that had not been described from Metridia species, indicating that bioluminescence produced by these copepods may be more complex than previously known. This includes another copepod luciferase, as well as one from a shrimp. Furthermore, feeding experiments using mass spectrometry and 13C labelled L-tyrosine and L-phenylalanine firmly establish that M. lucens produces its own coelenterazine luciferin rather than acquiring it through diet. This coelenterazine synthesis has only been directly confirmed in one other copepod species.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Damien Lanfray ◽  
Alexandre Caron ◽  
Marie-Claude Roy ◽  
Mathieu Laplante ◽  
Fabrice Morin ◽  
...  

Acyl-CoA binding domain-containing 7 (Acbd7) is a paralog gene of the diazepam-binding inhibitor/Acyl-CoA binding protein in which single nucleotide polymorphism has recently been associated with obesity in humans. In this report, we provide converging evidence indicating that a splice variant isoform of the Acbd7 mRNA is expressed and translated by some POMC and GABAergic-neurons in the hypothalamic arcuate nucleus (ARC). We have demonstrated that the ARC ACBD7 isoform was produced and processed into a bioactive peptide referred to as nonadecaneuropeptide (NDN) in response to catabolic signals. We have characterized NDN as a potent anorexigenic signal acting through an uncharacterized endozepine G protein-coupled receptor and subsequently via the melanocortin system. Our results suggest that ACBD7-producing neurons participate in the hypothalamic leptin signalling pathway. Taken together, these data suggest that ACBD7-producing neurons are involved in the hypothalamic control exerted on food intake and energy expenditure by the leptin-melanocortin pathway.


Sign in / Sign up

Export Citation Format

Share Document