scholarly journals The RhoGAP myosin 9/HUM-7 integrates membrane signals to modulate Rho/RHO-1 during embryonic morphogenesis in C. elegans

2018 ◽  
Author(s):  
Andre G. Wallace ◽  
Hamidah Raduwan ◽  
John Carlet ◽  
Martha C. Soto

AbstractDuring embryonic morphogenesis, cells and tissues undergo dramatic movements under the control of F-actin regulators. Our studies of epidermal cell migrations in developing C. elegans embryos have identified multiple plasma membrane signals that regulate the Rac GTPase, thus regulating WAVE and Arp2/3 complexes, to promote branched F-actin formation and polarized enrichment. We describe here a pathway that acts in parallel to Rac to transduce membrane signals to control epidermal F-actin through the GTPase Rho. Rho contributes to epidermal migrations through effects on underlying neuroblasts. Here we identify signals to regulate Rho in the epidermis. HUM-7, the C. elegans homolog of human Myo9A and Myo9B, regulates F-actin dynamics during epidermal migrations, by controlling Rho. Genetics and biochemistry support that HUM-7 behaves as GAP for the Rho GTPase, so that loss of HUM-7 enhances Rho-dependent epidermal cell behaviors. We identify SAX-3/ROBO as an upstream signal that contributes to attenuated Rho activation through its regulation of HUM-7/Myo9. These studies identify a new role for Rho during epidermal cell migrations, and suggest that Rho activity is regulated by SAX-3/ROBO acting on the RhoGAP HUM-7.

Author(s):  
Marta Fratini ◽  
Praveen Krishnamoorthy ◽  
Irene Stenzel ◽  
Mara Riechmann ◽  
Kirsten Bacia ◽  
...  

AbstractPollen tube growth requires coordination of cytoskeletal dynamics and apical secretion. The regulatory phospholipid, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is enriched in the subapical plasma membrane of pollen tubes and can influence both actin dynamics and secretion. How alternative PtdIns(4,5)P2-effects are specified is unclear. Spinning disc microscopy (SD) reveals dual distribution of a fluorescent PtdIns(4,5)P2-reporter in dynamic plasma membrane nanodomains vs. apparent diffuse membrane labelling, consistent with spatially distinct coexisting pools of PtdIns(4,5)P2. Several PI4P 5-kinases (PIP5Ks) can generate PtdIns(4,5)P2 in pollen tubes. Despite localizing to one membrane region, AtPIP5K2 and NtPIP5K6 display distinctive overexpression effects on cell morphologies, respectively related to altered actin dynamics or membrane trafficking. When analyzed by SD, AtPIP5K2-EYFP associated with nanodomains, whereas NtPIP5K6-EYFP localized diffusely. Chimeric AtPIP5K2 and NtPIP5K6 variants with reciprocally swapped membrane-associating domains evoked reciprocally shifted effects on cell morphology upon overexpression. Overall, PI4P 5-kinase variants targeted to nanodomains stabilized actin, suggesting a specific function of PtdIns(4,5)P2-nanodomains. A distinct role of nanodomain-associated AtPIP5K2 in actin regulation is further supported by proximity to and interaction with the Rho-GTPase NtRac5, and by functional interplay with elements of ROP-signalling. Plasma membrane nano-organization may thus aid the specification of PtdIns(4,5)P2-functions to coordinate cytoskeletal dynamics and secretion in pollen tubes.


2019 ◽  
Vol 63 (5) ◽  
pp. 483-495 ◽  
Author(s):  
Matthias Schaks ◽  
Grégory Giannone ◽  
Klemens Rottner

Abstract Cell migration is an essential process, both in unicellular organisms such as amoeba and as individual or collective motility in highly developed multicellular organisms like mammals. It is controlled by a variety of activities combining protrusive and contractile forces, normally generated by actin filaments. Here, we summarize actin filament assembly and turnover processes, and how respective biochemical activities translate into different protrusion types engaged in migration. These actin-based plasma membrane protrusions include actin-related protein 2/3 complex-dependent structures such as lamellipodia and membrane ruffles, filopodia as well as plasma membrane blebs. We also address observed antagonisms between these protrusion types, and propose a model – also inspired by previous literature – in which a complex balance between specific Rho GTPase signaling pathways dictates the protrusion mechanism employed by cells. Furthermore, we revisit published work regarding the fascinating antagonism between Rac and Rho GTPases, and how this intricate signaling network can define cell behavior and modes of migration. Finally, we discuss how the assembly of actin filament networks can feed back onto their regulators, as exemplified for the lamellipodial factor WAVE regulatory complex, tightly controlling accumulation of this complex at specific subcellular locations as well as its turnover.


2008 ◽  
Vol 181 (7) ◽  
pp. 1155-1168 ◽  
Author(s):  
Yong Jik Lee ◽  
Amy Szumlanski ◽  
Erik Nielsen ◽  
Zhenbiao Yang

The dynamic activity of tip-localized filamentous actin (F-actin) in pollen tubes is controlled by counteracting RIC4 and RIC3 pathways downstream of the ROP1 guanosine triphosphatase promoting actin assembly and disassembly, respectively. We show here that ROP1 activation is required for both the polar accumulation and the exocytosis of vesicles at the plasma membrane apex. The apical accumulation of exocytic vesicles oscillated in phase with, but slightly behind, apical actin assembly and was enhanced by overexpression of RIC4. However, RIC4 overexpression inhibited exocytosis, and this inhibition could be suppressed by latrunculin B treatment or RIC3 overexpression. We conclude that RIC4-dependent actin assembly is required for polar vesicle accumulation, whereas RIC3-mediated actin disassembly is required for exocytosis. Thus ROP1-dependent F-actin dynamics control tip growth through spatiotemporal coordination of vesicle targeting and exocytosis.


2021 ◽  
Vol 7 (13) ◽  
pp. eabc6345
Author(s):  
Shrawan Kumar Mageswaran ◽  
Wei Yuan Yang ◽  
Yogaditya Chakrabarty ◽  
Catherine M. Oikonomou ◽  
Grant J. Jensen

Cryo–electron tomography (cryo-ET) provides structural context to molecular mechanisms underlying biological processes. Although straightforward to implement for studying stable macromolecular complexes, using it to locate short-lived structures and events can be impractical. A combination of live-cell microscopy, correlative light and electron microscopy, and cryo-ET will alleviate this issue. We developed a workflow combining the three to study the ubiquitous and dynamic process of shedding in response to plasma membrane damage in HeLa cells. We found filopodia-like protrusions enriched at damage sites and acting as scaffolds for shedding, which involves F-actin dynamics, myosin-1a, and vacuolar protein sorting 4B (a component of the ‘endosomal sorting complex required for transport’ machinery). Overall, shedding is more complex than current models of vesiculation from flat membranes. Its similarities to constitutive shedding in enterocytes argue for a conserved mechanism. Our workflow can also be adapted to study other damage response pathways and dynamic cellular events.


2002 ◽  
Vol 156 (6) ◽  
pp. 1065-1076 ◽  
Author(s):  
Shoichiro Ono ◽  
Kanako Ono

Tropomyosin binds to actin filaments and is implicated in stabilization of actin cytoskeleton. We examined biochemical and cell biological properties of Caenorhabditis elegans tropomyosin (CeTM) and obtained evidence that CeTM is antagonistic to ADF/cofilin-dependent actin filament dynamics. We purified CeTM, actin, and UNC-60B (a muscle-specific ADF/cofilin isoform), all of which are derived from C. elegans, and showed that CeTM and UNC-60B bound to F-actin in a mutually exclusive manner. CeTM inhibited UNC-60B–induced actin depolymerization and enhancement of actin polymerization. Within isolated native thin filaments, actin and CeTM were detected as major components, whereas UNC-60B was present at a trace amount. Purified UNC-60B was unable to interact with the native thin filaments unless CeTM and other associated proteins were removed by high-salt extraction. Purified CeTM was sufficient to restore the resistance of the salt-extracted filaments from UNC-60B. In muscle cells, CeTM and UNC-60B were localized in different patterns. Suppression of CeTM by RNA interference resulted in disorganized actin filaments and paralyzed worms in wild-type background. However, in an ADF/cofilin mutant background, suppression of CeTM did not worsen actin organization and worm motility. These results suggest that tropomyosin is a physiological inhibitor of ADF/cofilin-dependent actin dynamics.


2012 ◽  
Vol 11 (5) ◽  
pp. 590-600 ◽  
Author(s):  
Fabien Lefèbvre ◽  
Valérie Prouzet-Mauléon ◽  
Michel Hugues ◽  
Marc Crouzet ◽  
Aurélie Vieillemard ◽  
...  

ABSTRACT Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae , the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P 2 production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck.


2003 ◽  
Vol 14 (3) ◽  
pp. 1097-1108 ◽  
Author(s):  
Rihong Zhou ◽  
Zhen Guo ◽  
Charles Watson ◽  
Emily Chen ◽  
Rong Kong ◽  
...  

Actin cytoskeleton plays an important role in the establishment of epithelial cell polarity. Cdc42, a member of Rho GTPase family, modulates actin dynamics via its regulators, such as IQGAP proteins. Gastric parietal cells are polarized epithelial cells in which regulated acid secretion occurs in the apical membrane upon stimulation. We have previously shown that actin isoforms are polarized to different membrane domains and that the integrity of the actin cytoskeleton is essential for acid secretion. Herein, we show that Cdc42 is preferentially distributed to the apical membrane of gastric parietal cells. In addition, we revealed that two Cdc42 regulators, IQGAP1 and IQGAP2, are present in gastric parietal cells. Interestingly, IQGAP2 is polarized to the apical membrane of the parietal cells, whereas IQGAP1 is mainly distributed to the basolateral membrane. An IQGAP peptide that competes with full-length IQGAP proteins for Cdc42-binding in vitro also inhibits acid secretion in streptolysin-O-permeabilized gastric glands. Furthermore, this peptide disrupts the association of IQGAP and Cdc42 with the apical actin cytoskeleton and prevents the apical membrane remodeling upon stimulation. We propose that IQGAP2 forms a link that associates Cdc42 with the apical cytoskeleton and thus allows for activation of polarized secretion in gastric parietal cells.


2019 ◽  
Author(s):  
Sukanya Basu ◽  
Beatriz González ◽  
Boyang Li ◽  
Garrett Kimble ◽  
Keith G. Kozminski ◽  
...  

ABSTRACTRho GTPases regulate cell polarity and signal transduction pathways to control morphogenetic responses in different settings. In yeast, the Rho GTPase Cdc42p regulates cell polarity, and through the p21-activated kinase Ste20p, Cdc42p also regulates mitogen-activated protein kinase (MAPK) pathways (mating, filamentous growth or fMAPK, and HOG). Although much is known about how Cdc42p regulates cell polarity and the mating pathway, how Cdc42p regulates the fMAPK pathway is not clear. To address this question, Cdc42p-dependent MAPK pathways were compared in the filamentous (∑1278b) strain background. Each MAPK pathway showed a unique activation profile, with the fMAPK pathway exhibiting slow activation kinetics compared to the mating and HOG pathways. A previously characterized version of Cdc42p, Cdc42pE100A, that is specifically defective for fMAPK pathway signaling, was defective for interaction with Bem4p, the pathway-specific adaptor for the fMAPK pathway. Corresponding residues in Bem4p were identified that were required for interaction with Cdc42p and fMAPK pathway signaling. The polarity adaptor Bem1p also regulated the fMAPK pathway. In the fMAPK pathway, Bem1p recruited Ste20p to the plasma membrane, cycled between an open and closed conformation, and interacted with the GEF for Cdc42, Cdc24p. Bem1p also regulated effector pathways in different ways, behaving as a multi-functional adaptor in some pathways and an inert scaffold in others. Genetic suppression tests showed that Bem4p and Bem1p regulate the fMAPK pathway in an ordered sequence. Collectively, the study demonstrates unique and sequential functions for Rho GTPase adaptors in regulating MAPK pathways.HIGHLIGHTSComparing Cdc42p-dependent MAPK pathways showed that the fMAPK pathway had slow activation kinetics compared to the mating and HOG pathways.A collection of cdc42 alleles was tested for MAPK pathway functions. § Cdc42pE100A, previously characterized as being specifically defective for fMAPK signaling, showed reduced interaction with the fMAPK pathway adaptor Bem4p.§ Corresponding residues in Bem4p were identified that were required for interaction with Cdc42p and fMAPK signaling.The polarity adaptor Bem1p regulated the fMAPK pathway. § Bem1p regulated the fMAPK pathway by recruiting Ste20p to the plasma membrane, cycling between an open and closed conformation, and interacting with the Cdc42p GEF, Cdc24p.Different domains of Bem1p had different roles in regulating effector pathways. § Bem1p may function as a multi-functional adaptor in some pathways and an inert scaffold in others.Bem4p and Bem1p regulated the fMAPK pathway in an ordered sequence. § The data support a model where Bem4p recruits Cdc24p to GDP-Cdc42p, and Bem1p directs GTP-Cdc42p to Ste20p at the plasma membrane.§ The bud-site GTPase Rsr1p regulates Cdc24p in the fMAPK pathway but does not initiate signaling.


Author(s):  
Christopher A. Brittin ◽  
Anthony Santella ◽  
Kristopher Barnes ◽  
Mark W. Moyle ◽  
Li Fan ◽  
...  

SummaryNeuropils are compartments in the nervous system containing dense networks of neurites and synapses which function as information processing centers. Neuropil formation requires structural and functional organization at and across different scales, achieving single-axon precision for circuits that carry out the core functions while simultaneously accommodating variability among individuals [1; 2; 3; 4]. How these organizational features emerge over development is poorly understood. The nerve ring is the primary neuropil in C. elegans, and its structure is thoroughly mapped [5; 6]. We show that prior to axon outgrowth, nerve ring neurons form a ring of multicellular rosettes with surrounding cells to organize the stratified nerve ring structure [7; 8]. Axon bundles which correspond to future nerve ring strata grow from rosette centers, travel along the ring on “bridge” cells that are simultaneously engaged in adjacent rosettes, and assemble into a topographic scaffold of the nerve ring. SAX-3/Robo is required for proper rosette formation and outgrowth from the center. Furthermore, axon contact sites that form early in development are more conserved than the later ones, indicating a temporal component in neuropil structural variability. Our results reveal an unexpected and critical role of collective cell behaviors prior to innervation to pattern a complex neuropil and orchestrate its formation across scales.


2019 ◽  
Author(s):  
Nathalie R. Reinhard ◽  
Sanne van der Niet ◽  
Anna Chertkova ◽  
Marten Postma ◽  
Peter L. Hordijk ◽  
...  

AbstractThe Rho GTPase family is involved in actin dynamics and regulates the barrier function of the endothelium. One of the main barrier-promoting Rho GTPases is Cdc42, also known as cell division control protein 42 homolog. Currently, regulation of Cdc42-based signaling networks in endothelial cells (ECs) lack molecular details. To examine these, we focused on a subset of 15 Rho guanine nucleotide exchange factors (GEFs), which are expressed in the endothelium. By performing single cell FRET measurements with Rho GTPase biosensors in primary human ECs, we monitored GEF efficiency towards Cdc42 and Rac1. A new, single cell-based analysis was developed and used to enable the quantitative comparison of cellular activities of the full-length GEFs. Our data reveal a specific GEF dependent activation profile, with most efficient Cdc42 activation induced by PLEKHG2, FGD1, PLEKHG1 and pRex1 and the highest selectivity for FGD1. Additionally, we generated truncated GEF constructs that comprise only the catalytic dbl homology (DH) domain or together with the adjacent pleckstrin homology domain (DHPH). The DH domain by itself did not activate Cdc42, whereas the DHPH domain of ITSN1, ITSN2 and PLEKHG1 showed activity towards Cdc42. Together, our study characterized endothelial GEFs that may activate Cdc42, which will be of great value for the field of vascular biology.Abstract FigureGraphical Abstract


Sign in / Sign up

Export Citation Format

Share Document