scholarly journals Perceptual inference employs intrinsic alpha frequency to resolve perceptual ambiguity

2018 ◽  
Author(s):  
Lu Shen ◽  
Biao Han ◽  
Lihan Chen ◽  
Qi Chen

AbstractThe brain uses its intrinsic dynamics to actively predict observed sensory inputs, especially under perceptual ambiguity. However, it remains unclear how this inference process is neurally implemented in biasing perception of ambiguous inputs towards the predicted percepts. Using electroencephalography and intracranial recordings, we first show that the alpha-band frequency defines a unified time window for perceptual grouping across both space and time: information segments, either spatially or temporally segregated, will be integrated if they fall within the same alpha cycle. Moreover, predictions employ this prior knowledge on intrinsic alpha frequency to shift perceptual inference towards the most possibly observed percepts. Multivariate decoding analysis showed that perceptual inference, based on variance in prestimulus alpha frequency (PAF), biases post-stimulus neural representations by inducing preactivation of the predicted percepts. fMRI results additionally showed that prestimulus activity and intrinsic organization status in the frontoparietal attentional network predict perceptual outcomes, probably by modulating occipitoparietal PAFs.

Author(s):  
А.А. Грищенко ◽  
A.A. Grishchenko

Studying coupling between brain areas from its electromagnetic activity is one of the key approaches in epilepsy research now, since epileptic activity has been considered to be a result of pathological synchronization in the brain. Often, research is conducted on animal models, because this allows to perform intracranial measurement, and to get rid of interference caused by the skull and to receive signals from deeper regions of the brain such as thalamus or hippocampus. In this study, the intracranial recordings from the frontal and parietal areas of cortex are investigated with a nonlinear correlation coefficient and a mutual information function in a sliding time window. The coupling estimates obtained were subjected for statistical analysis for significance using surrogate data. The dynamics of connectivity between the frontal cortex and the parietal cortex was shown to vary from seizure to seizure and from animal to animal. Therefore, estimates of the significant change in connectivity associated with initiation of the absense seizure, found previously based on averaging over a large number of animals and a large number of seizures for an each animal, can be a result of contribution of a relatively small number of seizures (less than a half of considered), for which the changes are significant.


2007 ◽  
Vol 97 (2) ◽  
pp. 1311-1318 ◽  
Author(s):  
Wolfgang Klimesch ◽  
Simon Hanslmayr ◽  
Paul Sauseng ◽  
Walter R. Gruber ◽  
Michael Doppelmayr

The hypothesis is tested whether the P1 of the event-related potential (ERP) component behaves like an evoked, traveling alpha wave. This hypothesis is based on different kinds of evidence showing, e.g., that—after undergoing phase reorganization—frequencies in the broad alpha range become synchronized (aligned) in absolute phase and contribute significantly to the generation of the P1. We investigated data from a Stroop task in which subjects had to respond only to the color and ignore the meaning of the presented words. Analyzing topographical phase relationships expressed in terms of traveling speed (with respect to Pz as trailing site) revealed that a systematic posterior to anterior traveling pattern appeared only in the broad time window of the P1-N1 complex and in the extended alpha frequency range. The obtained findings are consistent with the oscillatory ERP model and suggest that the P1 component may be considered a manifestation of an evoked, traveling alpha wave. We assume that the P1 reflects a top-down process in a sense that traveling alpha waves control or “gate” the direction of information processing in the brain.


2019 ◽  
Author(s):  
Yuanning Li ◽  
Michael J. Ward ◽  
R. Mark Richardson ◽  
Max G’Sell ◽  
Avniel Singh Ghuman

AbstractPerception reflects not only input from the sensory periphery, but also the endogenous neural state when sensory inputs enter the brain. Whether endogenous neural states influence perception only through global mechanisms, such as arousal, or can also perception in a neural circuit and stimulus specific manner remains largely unknown. Intracranial recordings from 30 pre-surgical epilepsy patients showed that endogenous activity independently modulated the strength of trial-by-trial neural tuning of different visual category-selective neural circuits. Furthermore, the same aspect of the endogenous activity that influenced tuning in a particular neural circuit also correlated with reaction time only for trials with the category of image that circuit was selective for. These results suggest that endogenous activity may influence neural tuning and perception through circuit-specific predictive coding processes.


2020 ◽  
pp. 108705472096456
Author(s):  
Yue Yang ◽  
Gang Peng ◽  
Hongwu Zeng ◽  
Diangang Fang ◽  
Linlin Zhang ◽  
...  

Objective: The present study aimed to examine the effects of SNAP25 on the integration ability of intrinsic brain functions in children with ADHD, and whether the integration ability was associated with working memory (WM). Methods: A sliding time window method was used to calculate the spatial and temporal concordance among five rs-fMRI regional indices in 55 children with ADHD and 20 healthy controls. Results: The SNAP25 exhibited significant interaction effects with ADHD diagnosis on the voxel-wise concordance in the right posterior central gyrus, fusiform gyrus and lingual gyrus. Specifically, for children with ADHD, G-carriers showed increased voxel-wise concordance in comparison to TT homozygotes in the right precentral gyrus, superior frontal gyrus, postcentral gyrus, and middle frontal gyrus. The voxel-wise concordance was also found to be related to WM. Conclusion: Our findings provided a new insight into the neural mechanisms of the brain function of ADHD children.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Li Ni ◽  
Jianting Cao ◽  
Rubin Wang

To give a more definite criterion using electroencephalograph (EEG) approach on brain death determination is vital for both reducing the risks and preventing medical misdiagnosis. This paper presents several novel adaptive computable entropy methods based on approximate entropy (ApEn) and sample entropy (SampEn) to monitor the varying symptoms of patients and to determine the brain death. The proposed method is a dynamic extension of the standard ApEn and SampEn by introducing a shifted time window. The main advantages of the developed dynamic approximate entropy (DApEn) and dynamic sample entropy (DSampEn) are for real-time computation and practical use. Results from the analysis of 35 patients (63 recordings) show that the proposed methods can illustrate effectiveness and well performance in evaluating the brain consciousness states.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Li Pan ◽  
Kin-Sang Cho ◽  
Irvin Yi ◽  
Chi-Ho To ◽  
Dong Feng Chen ◽  
...  

Ischemia is a common pathological condition present in many neurodegenerative diseases, including ischemic stroke, retinal vascular occlusion, diabetic retinopathy, and glaucoma, threatening the sight and lives of millions of people globally. Ischemia can trigger excessive oxidative stress, inflammation, and vascular dysfunction, leading to the disruption of tissue homeostasis and, ultimately, cell death. Current therapies are very limited and have a narrow time window for effective treatment. Thus, there is an urgent need to develop more effective therapeutic options for ischemia-induced neural injuries. With emerging reports on the pharmacological properties of natural flavonoids, these compounds present potent antioxidative, anti-inflammatory, and antiapoptotic agents for the treatment of ischemic insults. Three major active flavonoids, baicalein, baicalin, and wogonin, have been extracted from Scutellaria baicalensis Georgi (S. baicalensis); all of which are reported to have low cytotoxicity. They have been demonstrated to exert promising pharmacological capabilities in preventing cell and tissue damage. This review focuses on the therapeutic potentials of these flavonoids against ischemia-induced neurotoxicity and damage in the brain and retina. The bioactivity and bioavailability of baicalein, baicalin, and wogonin are also discussed. It is with hope that the therapeutic potential of these flavonoids can be utilized and developed as natural treatments for ischemia-induced injuries of the central nervous system (CNS).


PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001465
Author(s):  
Ambra Ferrari ◽  
Uta Noppeney

To form a percept of the multisensory world, the brain needs to integrate signals from common sources weighted by their reliabilities and segregate those from independent sources. Previously, we have shown that anterior parietal cortices combine sensory signals into representations that take into account the signals’ causal structure (i.e., common versus independent sources) and their sensory reliabilities as predicted by Bayesian causal inference. The current study asks to what extent and how attentional mechanisms can actively control how sensory signals are combined for perceptual inference. In a pre- and postcueing paradigm, we presented observers with audiovisual signals at variable spatial disparities. Observers were precued to attend to auditory or visual modalities prior to stimulus presentation and postcued to report their perceived auditory or visual location. Combining psychophysics, functional magnetic resonance imaging (fMRI), and Bayesian modelling, we demonstrate that the brain moulds multisensory inference via 2 distinct mechanisms. Prestimulus attention to vision enhances the reliability and influence of visual inputs on spatial representations in visual and posterior parietal cortices. Poststimulus report determines how parietal cortices flexibly combine sensory estimates into spatial representations consistent with Bayesian causal inference. Our results show that distinct neural mechanisms control how signals are combined for perceptual inference at different levels of the cortical hierarchy.


2019 ◽  
Author(s):  
Ulrik Beierholm ◽  
Tim Rohe ◽  
Ambra Ferrari ◽  
Oliver Stegle ◽  
Uta Noppeney

AbstractTo form the most reliable percept of the environment, the brain needs to represent sensory uncertainty. Current theories of perceptual inference assume that the brain computes sensory uncertainty instantaneously and independently for each stimulus.In a series of psychophysics experiments human observers localized auditory signals that were presented in synchrony with spatially disparate visual signals. Critically, the visual noise changed dynamically over time with or without intermittent jumps. Our results show that observers integrate audiovisual inputs weighted by sensory reliability estimates that combine information from past and current signals as predicted by an optimal Bayesian learner or approximate strategies of exponential discountingOur results challenge classical models of perceptual inference where sensory uncertainty estimates depend only on the current stimulus. They demonstrate that the brain capitalizes on the temporal dynamics of the external world and estimates sensory uncertainty by combining past experiences with new incoming sensory signals.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Adrian Ponce-Alvarez ◽  
Gabriela Mochol ◽  
Ainhoa Hermoso-Mendizabal ◽  
Jaime de la Rocha ◽  
Gustavo Deco

Previous research showed that spontaneous neuronal activity presents sloppiness: the collective behavior is strongly determined by a small number of parameter combinations, defined as ‘stiff’ dimensions, while it is insensitive to many others (‘sloppy’ dimensions). Here, we analyzed neural population activity from the auditory cortex of anesthetized rats while the brain spontaneously transited through different synchronized and desynchronized states and intermittently received sensory inputs. We showed that cortical state transitions were determined by changes in stiff parameters associated with the activity of a core of neurons with low responses to stimuli and high centrality within the observed network. In contrast, stimulus-evoked responses evolved along sloppy dimensions associated with the activity of neurons with low centrality and displaying large ongoing and stimulus-evoked fluctuations without affecting the integrity of the network. Our results shed light on the interplay among stability, flexibility, and responsiveness of neuronal collective dynamics during intrinsic and induced activity.


Psihologija ◽  
2010 ◽  
Vol 43 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Vanja Kovic ◽  
Kim Plunkett ◽  
Gert Westermann

In this paper we present an ERP study examining the underlying nature of semantic representation of animate and inanimate objects. Time-locking ERP signatures to the onset of auditory stimuli we found topological similarities in animate and inanimate object processing. Moreover, we found no difference between animates and inanimates in the N400 amplitude, when mapping more specific to more general representation (visual to auditory stimuli). These studies provide further evidence for the theory of unitary semantic organization, but no support for the feature-based prediction of segregated conceptual organization. Further comparisons of animate vs. inanimate matches and within-vs. between-category mismatches revealed following results: processing of animate matches elicited more positivity than processing of inanimates within the N400 time-window; also, inanimate mismatches elicited a stronger N400 than did animate mismatches. Based on these findings we argue that one of the possible explanations for finding different and sometimes contradictory results in the literature regarding processing and representations of animates and inanimates in the brain could lie in the variability of selected items within each of the categories, that is, homogeneity of the categories.


Sign in / Sign up

Export Citation Format

Share Document