scholarly journals A Novel Method for the Capture-based Purification of Whole Viral Native RNA Genomes

2018 ◽  
Author(s):  
Cedric Chih Shen Tan ◽  
Sebastian Maurer-Stroh ◽  
Yue Wan ◽  
October Michael Sessions ◽  
Paola Florez de Sessions

ABSTRACTCurrent technologies for targeted characterization and manipulation of viral RNA primarily involve amplification or ultracentrifugation with isopycnic gradients of viral particles to decrease host RNA background. The former strategy is non-compatible for characterizing properties innate to RNA strands such as secondary structure, RNA-RNA interactions, and also for nanopore direct RNA sequencing involving the sequencing of native RNA strands. The latter strategy, ultracentrifugation, causes loss in genomic information due to its inability to retrieve unassembled viral RNA. To address this, we developed a novel application of current nucleic acid hybridization technologies for direct characterization of RNA. In particular, we modified a current enrichment protocol to capture whole viral native RNA genomes for downstream RNA assays to circumvent the abovementioned problems. This technique involves hybridization of biotinylated baits at 500 nucleotides (nt) intervals, stringent washes and release of free native RNA strands using DNase I treatment, with a turnaround time of about 6 h 15 min. RT-qPCR was used as the primary proof of concept that capture-based purification indeed removes host background. Subsequently, capture-based purification was applied to direct RNA sequencing as proof of concept that capture-based purification can be coupled with downstream RNA assays. We report that this protocol was able to successfully purify viral RNA by 561-791 fold. We also report that application of this protocol to direct RNA sequencing yielded a reduction in human host RNA background by 1580 fold, a 99.91% recovery of viral genome with at least 15x coverage, and a mean coverage across the genome of 120x. This report is, to the best of our knowledge, the first description of a capture-based purification method for assays that involve direct manipulation or characterisation of native RNA. This report also describes a successful application of capture-based purification as a direct RNA sequencing strategy that addresses certain limitations of current strategies in sequencing RNA viral genomes.

2021 ◽  
Author(s):  
Phillip Cohen ◽  
Emma J DeGrace ◽  
Oded Danziger ◽  
Roosheel Patel ◽  
Brad R Rosenberg

Single cell RNA sequencing (scRNAseq) studies have provided critical insight into the pathogenesis of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), the causative agent of COronaVIrus Disease 2019 (COVID-19). scRNAseq workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. The performance of different scRNAseq methods to study SARS-CoV-2 RNAs has not been thoroughly evaluated. Here, we compare different scRNAseq methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs), which are produced only during active viral replication and not present in viral particles. We present a data processing strategy, single cell CoronaVirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to sgmRNAs or genomic RNA (gRNA). Compared to standard 10X Genomics Chromium Next GEM Single Cell 3′ (10X 3′) and Chromium Next GEM Single Cell V(D)J (10X 5′) sequencing, we find that 10X 5′ with an extended R1 sequencing strategy maximizes the unambiguous detection of sgmRNAs by increasing the number of reads spanning leader-sgmRNA junction sites. Differential gene expression testing and KEGG enrichment analysis of infected cells compared with bystander or mock cells showed an enrichment for COVID19-associated genes, supporting the ability of our method to accurately identify infected cells. Our method allows for quantification of coronavirus sgmRNA expression at single-cell resolution, and thereby supports high resolution studies of the dynamics of coronavirus RNA synthesis.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1096
Author(s):  
Timothy W. Thoner ◽  
Xiang Ye ◽  
John Karijolich ◽  
Kristen M. Ogden

Packaging of segmented, double-stranded RNA viral genomes requires coordination of viral proteins and RNA segments. For mammalian orthoreovirus (reovirus), evidence suggests either all ten or zero viral RNA segments are simultaneously packaged in a highly coordinated process hypothesized to exclude host RNA. Accordingly, reovirus generates genome-containing virions and “genomeless” top component particles. Whether reovirus virions or top component particles package host RNA is unknown. To gain insight into reovirus packaging potential and mechanisms, we employed next-generation RNA-sequencing to define the RNA content of enriched reovirus particles. Reovirus virions exclusively packaged viral double-stranded RNA. In contrast, reovirus top component particles contained similar proportions but reduced amounts of viral double-stranded RNA and were selectively enriched for numerous host RNA species, especially short, non-polyadenylated transcripts. Host RNA selection was not dependent on RNA abundance in the cell, and specifically enriched host RNAs varied for two reovirus strains and were not selected solely by the viral RNA polymerase. Collectively, these findings indicate that genome packaging into reovirus virions is exquisitely selective, while incorporation of host RNAs into top component particles is differentially selective and may contribute to or result from inefficient viral RNA packaging.


1994 ◽  
Vol 107 (6) ◽  
pp. 1457-1468 ◽  
Author(s):  
F. Puvion-Dutilleul ◽  
J.P. Bachellerie ◽  
N. Visa ◽  
E. Puvion

We have studied in HeLa cells at the electron microscope level the response to adenovirus infection of the RNA processing machinery. Components of the spliceosomes were localized by in situ hybridization with biotinylated U1 and U2 DNA probes and by immunolabeling with Y12 anti-Sm monoclonal antibody, whereas poly(A)+ RNAs were localized by specific binding of biotinylated poly(dT) probe. At early stages of nuclear transformation, the distribution of small nuclear RNPs was similar to that previously described in non-infected nuclei (Visa, N., Puvion-Dutilleul, F., Bachellerie, J.P. and Puvion, E., Eur. J. Cell Biol. 60, 308–321, 1993; Visa, N., Puvion-Dutilleul, F., Harper, F., Bachellerie, J. P. and Puvion, E., Exp. Cell Res. 208, 19–34, 1993). As the infection progresses, the large virus-induced inclusion body consists of a central storage site of functionally inactive viral genomes surrounded by a peripheral shell formed by clusters of interchromatin granules, compact rings and a fibrillogranular network in which are embedded the viral single-stranded DNA accumulation sites. Spliceosome components and poly(A)+ RNAs were then exclusively detected over the clusters of interchromatin granules and the fibrillogranular network whereas the viral single-stranded DNA accumulation sites and compact rings remained unlabeled, thus appearing to not be directly involved in splicing. Our data, therefore, suggest that the fibrillogranular network, in addition to being the site of viral transcription, is also a major site of viral RNA splicing. Like the clusters of interchromatin granules, which had been already involved in spliceosome assembly, they could also have a role in the sorting of viral spliced polyadenylated mRNAs before export to the cytoplasm. The compact rings, which contain non-polyadenylated viral RNA, might accumulate the non-used portions of the viral transcripts resulting from differential poly(A)+ site selection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Milo Gatti ◽  
Pier Giorgio Cojutti ◽  
Caterina Campoli ◽  
Fabio Caramelli ◽  
Luigi Tommaso Corvaglia ◽  
...  

Introduction: Antimicrobial treatment is quite common among hospitalized children. The dynamic age-associated physiological variations coupled with the pathophysiological alterations caused by underlying illness and potential drug-drug interactions makes the implementation of appropriate antimicrobial dosing extremely challenging among paediatrics. Therapeutic drug monitoring (TDM) may represent a valuable tool for assisting clinicians in optimizing antimicrobial exposure. Clinical pharmacological advice (CPA) is an approach based on the correct interpretation of the TDM result by the MD Clinical Pharmacologist in relation to specific underlying conditions, namely the antimicrobial susceptibility of the clinical isolate, the site of infection, the pathophysiological characteristics of the patient and/or the drug-drug interactions of cotreatments. The aim of this study was to assess the role of TDM-based CPAs in providing useful recommendations for the real-time personalization of antimicrobial dosing regimens in various paediatric settings.Materials and methods: Paediatric patients who were admitted to different settings of the IRCCS Azienda Ospedaliero-Universitaria of Bologna, Italy (paediatric intensive care unit [ICU], paediatric onco-haematology, neonatology, and emergency paediatric ward), between January 2021 and June 2021 and who received TDM-based CPAs on real-time for personalization of antimicrobial therapy were retrospectively assessed. Demographic and clinical features, CPAs delivered in relation to different settings and antimicrobials, and type of dosing adjustments were extracted. Two indicators of performance were identified. The number of dosing adjustments provided over the total number of delivered CPAs. The turnaround time (TAT) of CPAs according to a predefined scale (optimal, <12 h; quasi-optimal, between 12–24 h; acceptable, between 24–48 h; suboptimal, >48 h).Results: Overall, 247 CPAs were delivered to 53 paediatric patients (mean 4.7 ± 3.7 CPAs/patient). Most were delivered to onco-haematological patients (39.6%) and to ICU patients (35.8%), and concerned mainly isavuconazole (19.0%) and voriconazole (17.8%). Overall, CPAs suggested dosing adjustments in 37.7% of cases (24.3% increases and 13.4% decreases). Median TAT was 7.5 h (IQR 6.1–8.8 h). Overall, CPAs TAT was optimal in 91.5% of cases, and suboptimal in only 0.8% of cases.Discussion: Our study provides a proof of concept of the helpful role that TDM-based real-time CPAs may have in optimizing antimicrobial exposure in different challenging paediatric scenarios.


2021 ◽  
pp. 35-50
Author(s):  
Sebastian Krautwurst ◽  
Ronald Dijkman ◽  
Volker Thiel ◽  
Andi Krumbholz ◽  
Manja Marz
Keyword(s):  

Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 562
Author(s):  
Joyce Odeke Akello ◽  
Stephen L. Leib ◽  
Olivier Engler ◽  
Christian Beuret

Identification and characterization of viral genomes in vectors including ticks and mosquitoes positive for pathogens of great public health concern using metagenomic next generation sequencing (mNGS) has challenges. One such challenge is the ability to efficiently recover viral RNA which is typically dependent on sample processing. We evaluated the quantitative effect of six different extraction methods in recovering viral RNA in vectors using negative tick homogenates spiked with serial dilutions of tick-borne encephalitis virus (TBEV) and surrogate Langat virus (LGTV). Evaluation was performed using qPCR and mNGS. Sensitivity and proof of concept of optimal method was tested using naturally positive TBEV tick homogenates and positive dengue, chikungunya, and Zika virus mosquito homogenates. The amount of observed viral genome copies, percentage of mapped reads, and genome coverage varied among different extractions methods. The developed Method 5 gave a 120.8-, 46-, 2.5-, 22.4-, and 9.9-fold increase in the number of viral reads mapping to the expected pathogen in comparison to Method 1, 2, 3, 4, and 6, respectively. Our developed Method 5 termed ROVIV (Recovery of Viruses in Vectors) greatly improved viral RNA recovery and identification in vectors using mNGS. Therefore, it may be a more sensitive method for use in arbovirus surveillance.


2019 ◽  
Vol 299 ◽  
pp. 8-12 ◽  
Author(s):  
Lucia Strieskova ◽  
Iveta Gazdaricova ◽  
Michal Kajsik ◽  
Katarina Soltys ◽  
Jaroslav Budis ◽  
...  

mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Orkide O. Koyuncu ◽  
Ren Song ◽  
Todd M. Greco ◽  
Ileana M. Cristea ◽  
Lynn W. Enquist

ABSTRACTInfection by alphaherpesviruses invariably results in invasion of the peripheral nervous system (PNS) and establishment of either a latent or productive infection. Infection begins with long-distance retrograde transport of viral capsids and tegument proteins in axons toward the neuronal nuclei. Initial steps of axonal entry, retrograde transport, and replication in neuronal nuclei are poorly understood. To better understand how the mode of infection in the PNS is determined, we utilized a compartmented neuron culturing system where distal axons of PNS neurons are physically separated from cell bodies. We infected isolated axons with fluorescent-protein-tagged pseudorabies virus (PRV) particles and monitored viral entry and transport in axons and replication in cell bodies during low and high multiplicities of infection (MOIs of 0.01 to 100). We found a threshold for efficient retrograde transport in axons between MOIs of 1 and 10 and a threshold for productive infection in the neuronal cell bodies between MOIs of 1 and 0.1. Below an MOI of 0.1, the viral genomes that moved to neuronal nuclei were silenced. These genomes can be reactivated after superinfection by a nonreplicating virus, but not by a replicating virus. We further showed that viral particles at high-MOI infections compete for axonal proteins and that this competition determines the number of viral particles reaching the nuclei. Using mass spectrometry, we identified axonal proteins that are differentially regulated by PRV infection. Our results demonstrate the impact of the multiplicity of infection and the axonal milieu on the establishment of neuronal infection initiated from axons.IMPORTANCEAlphaherpesvirus genomes may remain silent in peripheral nervous system (PNS) neurons for the lives of their hosts. These genomes occasionally reactivate to produce infectious virus that can reinfect peripheral tissues and spread to other hosts. Here, we use a neuronal culture system to investigate the outcome of axonal infection using different numbers of viral particles and coinfection assays. We found that the dynamics of viral entry, transport, and replication change dramatically depending on the number of virus particles that infect axons. We demonstrate that viral genomes are silenced when the infecting particle number is low and that these genomes can be reactivated by superinfection with UV-inactivated virus, but not with replicating virus. We further show that viral invasion rapidly changes the profiles of axonal proteins and that some of these axonal proteins are rate limiting for efficient infection. Our study provides new insights into the establishment of silent versus productive alphaherpesvirus infections in the PNS.


Sign in / Sign up

Export Citation Format

Share Document