scholarly journals Metabolic adaptations underlying genome flexibility in prokaryotes

2018 ◽  
Author(s):  
Akshit Goyal

AbstractEven across genomes of the same species, prokaryotes exhibit remarkable flexibility in gene content. We do not know whether this flexible or “accessory” content is mostly neutral or adaptive, largely due to the lack of explicit analyses of accessory gene function. Here, across 96 diverse prokaryotic species, I show that a considerable fraction (~40%) of accessory genomes harbours beneficial metabolic functions. These functions take two forms: (1) they significantly expand the biosynthetic potential of individual strains, and (2) they help reduce strain-specific metabolic auxotrophies via intra-species metabolic exchanges. I find that the potential of both these functions increases with increasing genome flexibility. Together, these results are consistent with a significant adaptive role for prokaryotic pangenomes.Author SummaryRecent and rapid advancements in genome sequencing technologies have revealed key insights into the world of bacteria and archaea. One puzzling aspect uncovered by these studies is the following: genomes of the same species can often look very different. Specifically, some “core” genes are maintained across all intraspecies genomes, but many “accessory” genes differ between strains. A major ongoing debate thus asks: do most of these accessory genes provide a benefit to different strains, and if so, in what form? In this study, I suggest that the answer is “yes, through metabolic interactions”. I show that many accessory genes provide significant metabolic advantages to different strains in different conditions. I achieve this by explicitly conducting a large-scale systematic analysis of 1,339 genomes across 96 diverse species of bacteria and archaea. A surprising prediction of this study that in many ecological niches, co-occurring strains of the same species may help each other survive by exchanging metabolites exclusively produced by these different accessory genes. More pronounced gene differences lead to more underlying metabolic advantages.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Isaiah Paolo A. Lee ◽  
Cheryl P. Andam

Abstract Background Cronobacter sakazakii is an emerging opportunistic bacterial pathogen known to cause neonatal and pediatric infections, including meningitis, necrotizing enterocolitis, and bacteremia. Multiple disease outbreaks of C. sakazakii have been documented in the past few decades, yet little is known of its genomic diversity, adaptation, and evolution. Here, we analyzed the pan-genome characteristics and phylogenetic relationships of 237 genomes of C. sakazakii and 48 genomes of related Cronobacter species isolated from diverse sources. Results The C. sakazakii pan-genome contains 17,158 orthologous gene clusters, and approximately 19.5% of these constitute the core genome. Phylogenetic analyses reveal the presence of at least ten deep branching monophyletic lineages indicative of ancestral diversification. We detected enrichment of functions involved in proton transport and rotational mechanism in accessory genes exclusively found in human-derived strains. In environment-exclusive accessory genes, we detected enrichment for those involved in tryptophan biosynthesis and indole metabolism. However, we did not find significantly enriched gene functions for those genes exclusively found in food strains. The most frequently detected virulence genes are those that encode proteins associated with chemotaxis, enterobactin synthesis, ferrienterobactin transporter, type VI secretion system, galactose metabolism, and mannose metabolism. The genes fos which encodes resistance against fosfomycin, a broad-spectrum cell wall synthesis inhibitor, and mdf(A) which encodes a multidrug efflux transporter were found in nearly all genomes. We found that a total of 2991 genes in the pan-genome have had a history of recombination. Many of the most frequently recombined genes are associated with nutrient acquisition, metabolism and toxin production. Conclusions Overall, our results indicate that the presence of a large accessory gene pool, ability to switch between ecological niches, a diverse suite of antibiotic resistance, virulence and niche-specific genes, and frequent recombination partly explain the remarkable adaptability of C. sakazakii within and outside the human host. These findings provide critical insights that can help define the development of effective disease surveillance and control strategies for Cronobacter-related diseases.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena Jakob ◽  
Kseniya P. Vereshchagina ◽  
Anette Tillmann ◽  
Lorena Rivarola-Duarte ◽  
Denis V. Axenov-Gribanov ◽  
...  

AbstractLake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large-scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely-related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6–23.6 °C; 0.8 °C d−1). In concert with routine metabolic rates, activities of key metabolic enzymes increased strongly with temperature up to 15 °C in E. verrucosus, whereupon they leveled off (except for lactate dehydrogenase). In contrast, exponential increases were seen in E. cyaneus and G. lacustris throughout the thermal trial (Q10-values: 1.6–3.7). Cytochrome-c-oxidase, lactate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase activities were found to be higher in G. lacustris than in E. cyaneus, especially at the highest experimental temperature (23.6 °C). Decreasing gene expression levels revealed some thermal compensation in E. cyaneus but not in G. lacustris. In all species, shifts in enzyme activities favored glycolytic energy generation in the warmth. The congruent temperature-dependencies of enzyme activities and routine metabolism in E. verrucosus indicate a strong feedback-regulation of enzymatic activities by whole organism responses. The species-specific thermal reaction norms reflect the different ecological niches, including the spatial distribution, distinct thermal behavior such as temperature-dependent migration, movement activity, and mating season.



2021 ◽  
Author(s):  
Parsoa Khorsand ◽  
Fereydoun Hormozdiari

Abstract Large scale catalogs of common genetic variants (including indels and structural variants) are being created using data from second and third generation whole-genome sequencing technologies. However, the genotyping of these variants in newly sequenced samples is a nontrivial task that requires extensive computational resources. Furthermore, current approaches are mostly limited to only specific types of variants and are generally prone to various errors and ambiguities when genotyping complex events. We are proposing an ultra-efficient approach for genotyping any type of structural variation that is not limited by the shortcomings and complexities of current mapping-based approaches. Our method Nebula utilizes the changes in the count of k-mers to predict the genotype of structural variants. We have shown that not only Nebula is an order of magnitude faster than mapping based approaches for genotyping structural variants, but also has comparable accuracy to state-of-the-art approaches. Furthermore, Nebula is a generic framework not limited to any specific type of event. Nebula is publicly available at https://github.com/Parsoa/Nebula.



2009 ◽  
Vol 37 (1) ◽  
pp. 46-50 ◽  
Author(s):  
Adi Leiba ◽  
Dagan Schwartz ◽  
Talor Eran ◽  
Amir Blumenfeld ◽  
Daniel Laor ◽  
...  


2020 ◽  
Author(s):  
Agata Motyka-Pomagruk ◽  
Sabina Zoledowska ◽  
Agnieszka Emilia Misztak ◽  
Wojciech Sledz ◽  
Alessio Mengoni ◽  
...  

Abstract Background: Dickeya solani is an important plant pathogenic bacterium causing severe losses in European potato production. This species draws a lot of attention due to its remarkable virulence, great devastating potential and easier spread in contrast to other Dickeya spp. In view of a high need for extensive studies on economically important soft rot Pectobacteriaceae , we performed a comparative genomics analysis on D. solani strains to search for genetic foundations that would explain the differences in the observed virulence levels within the D. solani population. Results: High quality assemblies of 8 de novo sequenced D. solani genomes have been obtained. Whole-sequence comparison, ANIb, ANIm, Tetra and pangenome-oriented analyses performed on these genomes and the sequences of 14 additional strains revealed an exceptionally high level of homogeneity among the studied genetic material of D. solani strains. With the use of 22 genomes, the pangenome of D. solani , comprising 84.7% core, 7.2% accessory and 8.1% unique genes, has been almost completely determined, suggesting the presence of a nearly closed pangenome structure. Attribution of the genes included in the D. solani pangenome fractions to functional COG categories showed that higher percentages of accessory and unique pangenome parts in contrast to the core section are encountered in phage/mobile elements- and transcription- associated groups with the genome of RNS 05.1.2A strain having the most significant impact. Also, the first D. solani large-scale genome-wide phylogeny computed on concatenated core gene alignments is herein reported. Conclusions: The almost closed status of D. solani pangenome achieved in this work points to the fact that the unique gene pool of this species should no longer expand. Such a feature is characteristic of taxa whose representatives either occupy isolated ecological niches or lack efficient mechanisms for gene exchange and recombination, which seems rational concerning a strictly pathogenic species with clonal population structure. Finally, no obvious correlations between the geographical origin of D. solani strains and their phylogeny were found, which might reflect the specificity of the international seed potato market.



Big data is large-scale data collected for knowledge discovery, it has been widely used in various applications. Big data often has image data from the various applications and requires effective technique to process data. In this paper, survey has been done in the big image data researches to analysis the effective performance of the methods. Deep learning techniques provides the effective performance compared to other methods included wavelet based methods. The deep learning techniques has the problem of requiring more computational time, and this can be overcome by lightweight methods.



2020 ◽  
Author(s):  
Minsheng Hao ◽  
Kui Hua ◽  
Xuegong Zhang

AbstractRecent developments of spatial transcriptomic sequencing technologies provide powerful tools for understanding cells in the physical context of tissue micro-environments. A fundamental task in spatial gene expression analysis is to identify genes with spatially variable expression patterns, or spatially variable genes (SVgenes). Several computational methods have been developed for this task. Their high computational complexity limited their scalability to the latest and future large-scale spatial expression data.We present SOMDE, an efficient method for identifying SVgenes in large-scale spatial expression data. SOMDE uses selforganizing map (SOM) to cluster neighboring cells into nodes, and then uses a Gaussian Process to fit the node-level spatial gene expression to identify SVgenes. Experiments show that SOMDE is about 5-50 times faster than existing methods with comparable results. The adjustable resolution of SOMDE makes it the only method that can give results in ~5 minutes in large datasets of more than 20,000 sequencing sites. SOMDE is available as a python package on PyPI at https://pypi.org/project/somde.



2021 ◽  
Author(s):  
Ricardo Faustino ◽  
Miguel Faria ◽  
Monica Teixeira ◽  
Filipe Palavra ◽  
Maria Do Ceu Costa ◽  
...  

Coronaviruses have been responsible for major epidemic crises in 2003 with SARS-CoV-1, in 2012 with MERS-CoV and in 2019 with SARS-CoV-2 (COVID-19), causing serious atypical pneumonia in humans. We intend, with this systematic analysis and meta-analysis, to clarify the prevalence of the various strains of coronavirus in different animal species. For this purpose, we carried out an electronic survey using Pubmed's Veterinary Science search tool to conduct a systematic assessment of published studies reporting the prevalence of different strains of coronavirus in different animal species between 2015 and 2020. We conducted different analysis to assess sensitivity, publication bias, and heterogeneity, using random and fixed effects. The final meta-analysis included 42 studies for systematic review and 29 in the meta-analysis. For the geographic regions with a prevalence greater than or equal to 0.20 (Forest plot overall; prevalence = 0.20, p < 0.01, Q = 10476.22 and I2 = 100%), the most commonly detected viruses were: enteric coronavirus (ECoV), pigeon-dominant coronavirus, (PdCoV), Avian coronavirus M41, Avian coronavirus C46, Avian coronavirus A99, Avian coronavirus JMK, MERS-CoV, Bovine coronavirus, Ro-BatCoV GCCDC1, Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gamacoronavirus and human coronaviruses (HCoVs). The wide presence of different strains of coronavirus in different animal species on all continents demonstrates the great biodiversity and ubiquity of these viruses. The most recent epidemiological crises caused by coronavirus demonstrates our unpreparedness to anticipate and mitigate emerging risks, as well as the need to implement new epidemiological surveillance programs for viruses. Combined with the need to create advanced training courses in One Health, this is paramount in order to ensure greater effectiveness in fighting the next pandemics.



Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2006
Author(s):  
Anna Y Budkina ◽  
Elena V Korneenko ◽  
Ivan A Kotov ◽  
Daniil A Kiselev ◽  
Ilya V Artyushin ◽  
...  

According to various estimates, only a small percentage of existing viruses have been discovered, naturally much less being represented in the genomic databases. High-throughput sequencing technologies develop rapidly, empowering large-scale screening of various biological samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to be attributed specific loci for identification. This problem particularly impedes viral screening, due to vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl, for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of the new software by applying it to viral screening of the feces of bats collected in the Moscow region, which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa. The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens. In addition, it was shown that alignment-based methods were unable to identify the taxon for a large proportion of reads, and we additionally applied other approaches, showing that they can further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral databases remains a significant problem in the studies of viral diversity, and therefore necessitates the use of combined approaches, including those based on machine learning methods.



2021 ◽  
Author(s):  
Romain Feron ◽  
Robert Michael Waterhouse

Ambitious initiatives to coordinate genome sequencing of Earth's biodiversity mean that the accumulation of genomic data is growing rapidly. In addition to cataloguing biodiversity, these data provide the basis for understanding biological function and evolution. Accurate and complete genome assemblies offer a comprehensive and reliable foundation upon which to advance our understanding of organismal biology at genetic, species, and ecosystem levels. However, ever-changing sequencing technologies and analysis methods mean that available data are often heterogeneous in quality. In order to guide forthcoming genome generation efforts and promote efficient prioritisation of resources, it is thus essential to define and monitor taxonomic coverage and quality of the data. Here we present an automated analysis workflow that surveys genome assemblies from the United States National Center for Biotechnology Information (NCBI), assesses their completeness using the relevant Benchmarking Universal Single-Copy Orthologue (BUSCO) datasets, and collates the results into an interactively browsable resource. We apply our workflow to produce a community resource of available assemblies from the phylum Arthropoda, the Arthropoda Assembly Assessment Catalogue. Using this resource, we survey current taxonomic coverage and assembly quality at the NCBI, we examine how key assembly metrics relate to gene content completeness, and we compare results from using different BUSCO lineage datasets. These results demonstrate how the workflow can be used to build a community resource that enables large-scale assessments to survey species coverage and data quality of available genome assemblies, and to guide prioritisations for ongoing and future sampling, sequencing, and genome generation initiatives.



Sign in / Sign up

Export Citation Format

Share Document