scholarly journals ANKRD31 regulates spatiotemporal patterning of meiotic recombination initiation and ensures recombination between heterologous sex chromosomes in mice

2018 ◽  
Author(s):  
Frantzeskos Papanikos ◽  
Julie A.J. Clément ◽  
Erika Testa ◽  
Ramya Ravindranathan ◽  
Corinne Grey ◽  
...  

AbstractOrderly segregation of chromosomes during meiosis requires that crossovers form between homologous chromosomes by recombination. Programmed DNA double-strand breaks (DSBs) initiate meiotic recombination. We identify ANKRD31 as a critical component of complexes of DSB-promoting proteins which assemble on meiotic chromosome axes. Genome-wide, ANKRD31 deficiency causes delayed recombination initiation. In addition, loss of ANKRD31 alters DSB distribution owing to reduced selectivity for sites that normally attract DSBs. Strikingly, ANKRD31 deficiency also abolishes uniquely high rates of recombination that normally characterize pseudoautosomal regions (PARs) of X and Y chromosomes. Consequently, sex chromosomes do not form crossovers leading to chromosome segregation failure in ANKRD31-deficient spermatocytes. These defects are accompanied by a genome-wide delay in assembling DSB-promoting proteins on axes and a loss of a specialized PAR-axis domain that is highly enriched for DSB-promoting proteins. Thus, we propose a model for spatiotemporal patterning of recombination by ANKRD31-dependent control of axis-associated complexes of DSB-promoting proteins.

2021 ◽  
Vol 11 ◽  
Author(s):  
Matthew J. Rybin ◽  
Melina Ramic ◽  
Natalie R. Ricciardi ◽  
Philipp Kapranov ◽  
Claes Wahlestedt ◽  
...  

Genome instability is associated with myriad human diseases and is a well-known feature of both cancer and neurodegenerative disease. Until recently, the ability to assess DNA damage—the principal driver of genome instability—was limited to relatively imprecise methods or restricted to studying predefined genomic regions. Recently, new techniques for detecting DNA double strand breaks (DSBs) and single strand breaks (SSBs) with next-generation sequencing on a genome-wide scale with single nucleotide resolution have emerged. With these new tools, efforts are underway to define the “breakome” in normal aging and disease. Here, we compare the relative strengths and weaknesses of these technologies and their potential application to studying neurodegenerative diseases.


Science ◽  
2017 ◽  
Vol 355 (6320) ◽  
pp. 40-45 ◽  
Author(s):  
Eleni P. Mimitou ◽  
Shintaro Yamada ◽  
Scott Keeney

DNA double-strand breaks that initiate meiotic recombination are exonucleolytically processed. This 5′→3′ resection is a central, conserved feature of recombination but remains poorly understood. To address this lack, we mapped resection endpoints genome-wide at high resolution inSaccharomyces cerevisiae. Full-length resection requires Exo1 exonuclease and the DSB-responsive kinase Tel1, but not Sgs1 helicase. Tel1 also promotes efficient and timely resection initiation. Resection endpoints display pronounced heterogeneity between genomic loci that reflects a tendency for nucleosomes to block Exo1, yet Exo1 also appears to digest chromatin with high processivity and at rates similar to naked DNA in vitro. This paradox points to nucleosome destabilization or eviction as a defining feature of the meiotic resection landscape.


2017 ◽  
Author(s):  
Sona Gregorova ◽  
Vaclav Gergelits ◽  
Irena Chvatalova ◽  
Tanmoy Bhattacharyya ◽  
Barbora Valiskova ◽  
...  

AbstractThe infertility of hybrids between closely related species is one of the reproductive isolation mechanisms leading to speciation. Prdm9, the only known vertebrate hybrid sterility gene causes failure of meiotic chromosome synapsis and infertility in male hybrids between mouse strains derived from two mouse subspecies. Within species Prdm9 determines the sites of programmed DNA double-strand breaks and meiotic recombination hotspots. To investigate the relation between Prdm9-controlled meiotic arrest and asynapsis, we inserted random stretches of consubspecific homology on several autosomal pairs in sterile hybrids and analyzed their ability to form synaptonemal complexes and rescue male fertility. Twenty-seven or more Mb of consubspecific homology fully restored synapsis in a given autosomal pair and we predicted that two symmetric DSBs or more per chromosome are necessary for successful meiosis. We hypothesize that impaired recombination between evolutionary diverged homologous chromosomes could function as one of the mechanisms of hybrid sterility occurring in various sexually reproducing species.


2019 ◽  
Vol 36 (1) ◽  
pp. 10-16
Author(s):  
Peng Xu ◽  
Timothy Kennell ◽  
Min Gao ◽  
Robert P Kimberly ◽  
Zechen Chong ◽  
...  

Abstract Motivation Meiotic recombination facilitates the transmission of exchanged genetic material between homologous chromosomes and plays a crucial role in increasing the genetic variations in eukaryotic organisms. In humans, thousands of crossover events have been identified by genotyping related family members. However, most of these crossover regions span tens to hundreds of kb, which is not sufficient resolution to accurately identify the crossover breakpoints in a typical trio family. Results We have developed MRLR, a software using 10X linked reads to identify crossover events at a high resolution. By reconstructing the gamete genome, MRLR only requires a trio family dataset and can efficiently discover the crossover events. Using MRLR, we revealed a fine-scale pattern of crossover regions in six human families. From the two closest heterozygous alleles around the crossovers, we determined that MRLR achieved a median resolution 4.5 kb. This method can delineate a genome-wide landscape of crossover events at a precise scale, which is important for both functional and genomic features analysis of meiotic recombination. Availability and implementation MRLR is freely available at https://github.com/ChongLab/MRLR, implemented in Perl. Supplementary information Supplementary data are available at Bioinformatics online.


2006 ◽  
Vol 27 (5) ◽  
pp. 1868-1880 ◽  
Author(s):  
Nicolas Robine ◽  
Norio Uematsu ◽  
Franck Amiot ◽  
Xavier Gidrol ◽  
Emmanuel Barillot ◽  
...  

ABSTRACT Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs) catalyzed by the Spo11 protein. DSBs are not randomly distributed along chromosomes. To better understand factors that control the distribution of DSBs in budding yeast, we have examined the genome-wide binding and cleavage properties of the Gal4 DNA binding domain (Gal4BD)-Spo11 fusion protein. We found that Gal4BD-Spo11 cleaves only a subset of its binding sites, indicating that the association of Spo11 with chromatin is not sufficient for DSB formation. In centromere-associated regions, the centromere itself prevents DSB cleavage by tethered Gal4BD-Spo11 since its displacement restores targeted DSB formation. In addition, we observed that new DSBs introduced by Gal4BD-Spo11 inhibit surrounding DSB formation over long distances (up to 60 kb), keeping constant the number of DSBs per chromosomal region. Together, these results demonstrate that the targeting of Spo11 to new chromosomal locations leads to both local stimulation and genome-wide redistribution of recombination initiation and that some chromosomal regions are inherently cold regardless of the presence of Spo11.


2018 ◽  
Vol 115 (10) ◽  
pp. 2437-2442 ◽  
Author(s):  
Heïdi Serra ◽  
Christophe Lambing ◽  
Catherine H. Griffin ◽  
Stephanie D. Topp ◽  
Divyashree C. Nageswaran ◽  
...  

During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100–200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as noncrossovers. To bias DSB repair toward crossovers, we simultaneously increased dosage of the procrossover E3 ligase gene HEI10 and introduced mutations in the anticrossovers helicase genes RECQ4A and RECQ4B. As HEI10 and recq4a recq4b increase interfering and noninterfering crossover pathways, respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.


2021 ◽  
Author(s):  
Nataliya E. Yelina ◽  
Sabrina Gonzalez-Jorge ◽  
Dominique Hirsz ◽  
Ziyi Yang ◽  
Ian R. Henderson

AbstractDuring meiosis, homologous chromosomes pair and recombine, which can result in reciprocal crossovers that increase genetic diversity. Crossovers are unevenly distributed along eukaryote chromosomes and show repression in heterochromatin and the centromeres. Within the chromosome arms crossovers are often concentrated in hotspots, which are typically in the kilobase range. The uneven distribution of crossovers along chromosomes, together with their low number per meiosis, creates a limitation during crop breeding, where recombination can be beneficial. Therefore, targeting crossovers to specific genome locations has the potential to accelerate crop improvement. In plants, meiotic crossovers are initiated by DNA double strand breaks (DSBs) that are catalysed by SPO11 complexes, which consist of two catalytic (SPO11-1 and SPO11-2) and two non-catalytic subunits (MTOPVIB). We used the model plant Arabidopsis thaliana to target a dCas9-MTOPVIB fusion protein to the 3a crossover hotspot via CRISPR. We observed that this was insufficient to significantly change meiotic crossover frequency or pattern within 3a. We discuss the implications of our findings for targeting meiotic recombination within plant genomes.


2019 ◽  
Vol 5 (1) ◽  
pp. eaau9780 ◽  
Author(s):  
Qianting Zhang ◽  
Shu-Yan Ji ◽  
Kiran Busayavalasa ◽  
Chao Yu

Segregation of homologous chromosomes in meiosis I is tightly regulated by their physical links, or crossovers (COs), generated from DNA double-strand breaks (DSBs) through meiotic homologous recombination. In budding yeast, three ZMM (Zip1/2/3/4, Mer3, Msh4/5) proteins, Zip2, Zip4, and Spo16, form a “ZZS” complex, functioning to promote meiotic recombination via a DSB repair pathway. Here, we identified the mammalian ortholog of Spo16, termed SPO16, which interacts with the mammalian ortholog of Zip2 (SHOC1/MZIP2), and whose functions are evolutionarily conserved to promote the formation of COs. SPO16 localizes to the recombination nodules, as SHOC1 and TEX11 do. SPO16 is required for stabilization of SHOC1 and proper localization of other ZMM proteins. The DSBs formed in SPO16-deleted meiocytes were repaired without COs formation, although synapsis is less affected. Therefore, formation of SPO16-SHOC1 complex–associated recombination intermediates is a key step facilitating meiotic recombination that produces COs from yeast to mammals.


2008 ◽  
Vol 180 (4) ◽  
pp. 673-679 ◽  
Author(s):  
Fang Yang ◽  
Sigrid Eckardt ◽  
N. Adrian Leu ◽  
K. John McLaughlin ◽  
Peijing Jeremy Wang

During meiosis, homologous chromosomes undergo synapsis and recombination. We identify TEX15 as a novel protein that is required for chromosomal synapsis and meiotic recombination. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15-deficient spermatocytes exhibit a failure in chromosomal synapsis. In mutant spermatocytes, DNA double-strand breaks (DSBs) are formed, but localization of the recombination proteins RAD51 and DMC1 to meiotic chromosomes is severely impaired. Based on these data, we propose that TEX15 regulates the loading of DNA repair proteins onto sites of DSBs and, thus, its absence causes a failure in meiotic recombination.


2017 ◽  
Author(s):  
Heïdi Serra ◽  
Christophe Lambing ◽  
Catherine H. Griffin ◽  
Stephanie D. Topp ◽  
Mathilde Séguéla-Arnaud ◽  
...  

AbstractDuring meiosis homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double strand breaks, which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100–200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as non-crossovers. In order to bias DSB repair towards crossovers, we simultaneously increased dosage of the pro-crossover E3 ligase gene HEI10 and introduced mutations in the anti-crossover helicase genes RECQ4A and RECQ4B. As HEI10 and recq4a recq4b increase interfering and non-interfering crossover pathways respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect of HEI10 on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases towards the sub-telomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover-suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.


Sign in / Sign up

Export Citation Format

Share Document