scholarly journals Breaking the limit of 3D fluorescence microscopy by dual-stage-processing network

2018 ◽  
Author(s):  
Hao Zhang ◽  
Yuxuan Zhao ◽  
Chunyu Fang ◽  
Guo Li ◽  
Meng Zhang ◽  
...  

AbstractAlthough three-dimensional (3D) fluorescence microscopy is an essential tool for life science research, the fundamentally-limited optical throughput, as reflected in the compromise between speed and resolution, so far prevents further movement towards faster, clearer, and higher-throughput applications. We herein report a dual-stage mutual-feedback deep-learning approach that allows gradual reversion of microscopy degradation from high-resolution targets to low-resolution images. Using a single blurred-and-pixelated 3D image as input, our trained network infers a 3D output with notably higher resolution and improved contrast. The performance is better than conventional 1-stage network approaches. It pushes the throughput limit of current 3D fluorescence microscopy in three ways: notably reducing the acquisition time for accurate mapping of large organs, breaking the diffraction limit for imaging subcellular events with faster lower-toxicity measurement, and improving temporal resolution for capturing instantaneous biological processes. Combining our network approach with light-sheet fluorescence microscopy, we demonstrate the imaging of vessels and neurons in the mouse brain at single-cell resolution and with a throughput of 6 minutes for a whole brain. We also image cell organelles beyond the diffraction limit at a 2-Hz volume rate, and map neuronal activities of freely-moving C. elegans at single-cell resolution and 30-Hz volume rate.

2020 ◽  
Author(s):  
Le Xiao ◽  
Chunyu Fang ◽  
Yarong Wang ◽  
Tingting Yu ◽  
Yuxuan Zhao ◽  
...  

AbstractThough three-dimensional (3D) fluorescence microscopy has been an essential tool for modern life science research, the light scattering by biological specimens fundamentally prevents its more widespread applications in live imaging. We hereby report a deep-learning approach, termed ScatNet, that enables reversion of 3D fluorescence microscopy from high-resolution targets to low-quality, light-scattered measurements, thereby allowing restoration for a single blurred and light-scattered 3D image of deep tissue, with achieving improved resolution and signal-to-noise ratio. Our approach can computationally extend the imaging depth for current 3D fluorescence microscopes, without the addition of complicated optics. Combining ScatNet approach with cutting-edge light-sheet fluorescence microscopy, we demonstrate that the image restoration of cell nuclei in the deep layer of live Drosophila melanogaster embryos at single-cell resolution. Applying our approach to two-photon excitation microscopy, we could improve the signal and resolution of neurons in mouse brain beyond the photon ballistic region.


2017 ◽  
Author(s):  
Maxime Woringer ◽  
Xavier Darzacq ◽  
Christophe Zimmer ◽  
Mustafa Mir

AbstractThree-dimensional fluorescence microscopy based on Nyquist sampling of focal planes faces harsh trade-offs between acquisition time, light exposure, and signal-to-noise. We propose a 3D compressed sensing approach that uses temporal modulation of the excitation intensity during axial stage sweeping and can be adapted to fluorescence microscopes without hardware modification. We describe implementations on a lattice light sheet microscope and an epifluorescence microscope, and show that images of beads and biological samples can be reconstructed with a 5-10 fold reduction of light exposure and acquisition time. Our scheme opens a new door towards faster and less damaging 3D fluorescence microscopy.OCIS codes: (110.1758) Computational imaging; (170.2520) Fluorescence microscopy; (170.6900) Three-dimensional microscopy.


Optica ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 1627
Author(s):  
Hao Zhang ◽  
Yuxuan Zhao ◽  
Chunyu Fang ◽  
Guo Li ◽  
Meng Zhang ◽  
...  

2018 ◽  
Vol 72 (8) ◽  
pp. 1137-1169 ◽  
Author(s):  
Krishnendu Chatterjee ◽  
Feby Wijaya Pratiwi ◽  
Frances Camille M. Wu ◽  
Peilin Chen ◽  
Bi-Chang Chen

The introduction of light sheet fluorescence microscopy (LSFM) has overcome the challenges in conventional optical microscopy. Among the recent breakthroughs in fluorescence microscopy, LSFM had been proven to provide a high three-dimensional spatial resolution, high signal-to-noise ratio, fast imaging acquisition rate, and minuscule levels of phototoxic and photodamage effects. The aforementioned auspicious properties are crucial in the biomedical and clinical research fields, covering a broad range of applications: from the super-resolution imaging of intracellular dynamics in a single cell to the high spatiotemporal resolution imaging of developmental dynamics in an entirely large organism. In this review, we provided a systematic outline of the historical development of LSFM, detailed discussion on the variants and improvements of LSFM, and delineation on the most recent technological advancements of LSFM and its potential applications in single molecule/particle detection, single-molecule super-resolution imaging, imaging intracellular dynamics of a single cell, multicellular imaging: cell–cell and cell–matrix interactions, plant developmental biology, and brain imaging and developmental biology.


2020 ◽  
Author(s):  
Diwakar Turaga ◽  
Oriane B. Matthys ◽  
Tracy A. Hookway ◽  
David A. Joy ◽  
Meredith Calvert ◽  
...  

AbstractNative cardiac tissue is comprised of heterogeneous cell populations that work cooperatively for proper tissue function; thus, engineered tissue models have moved toward incorporating multiple cardiac cell types in an effort to recapitulate native multicellular composition and organization. Cardiac tissue models comprised of stem cell-derived cardiomyocytes require inclusion of non-myocytes to promote stable tissue formation, yet the specific contributions of the supporting non-myocyte population on the parenchymal cardiomyocytes and cardiac microtissues have yet to be fully dissected. This gap can be partly attributed to limitations in technologies able to accurately study the individual cellular structure and function that comprise intact 3D tissues. The ability to interrogate the cell-cell interactions in 3D tissue constructs has been restricted by conventional optical imaging techniques that fail to adequately penetrate multicellular microtissues with sufficient spatial resolution. Light sheet fluorescence microscopy overcomes these constraints to enable single cell-resolution structural and functional imaging of intact cardiac microtissues. Multicellular spatial distribution analysis of heterotypic cardiac cell populations revealed that cardiomyocytes and cardiac fibroblasts were randomly distributed throughout 3D microtissues. Furthermore, calcium imaging of live cardiac microtissues enabled single-cell detection of cardiomyocyte calcium activity, which showed that functional heterogeneity correlated with spatial location within the tissues. This study demonstrates that light sheet fluorescence microscopy can be utilized to determine single-cell spatial and functional interactions of multiple cell types within intact 3D engineered microtissues, thereby facilitating the determination of structure-function relationships at both tissue-level and single-cell resolution.Impact StatementThe ability to achieve single-cell resolution by advanced 3D light imaging techniques enables exquisite new investigation of multicellular analyses in native and engineered tissues. In this study, light sheet fluorescence microscopy was used to define structure-function relationships of distinct cell types in engineered cardiac microtissues by determining heterotypic cell distributions and interactions throughout the tissues as well as by assessing regional differences in calcium handing functional properties at the individual cardiomyocyte level.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefanie Schwinn ◽  
Zeinab Mokhtari ◽  
Sina Thusek ◽  
Theresa Schneider ◽  
Anna-Leena Sirén ◽  
...  

AbstractMedulloblastoma is the most common high-grade brain tumor in childhood. Medulloblastomas with c-myc amplification, classified as group 3, are the most aggressive among the four disease subtypes resulting in a 5-year overall survival of just above 50%. Despite current intensive therapy regimens, patients suffering from group 3 medulloblastoma urgently require new therapeutic options. Using a recently established c-myc amplified human medulloblastoma cell line, we performed an in-vitro-drug screen with single and combinatorial drugs that are either already clinically approved or agents in the advanced stage of clinical development. Candidate drugs were identified in vitro and then evaluated in vivo. Tumor growth was closely monitored by BLI. Vessel development was assessed by 3D light-sheet-fluorescence-microscopy. We identified the combination of gemcitabine and axitinib to be highly cytotoxic, requiring only low picomolar concentrations when used in combination. In the orthotopic model, gemcitabine and axitinib showed efficacy in terms of tumor control and survival. In both models, gemcitabine and axitinib were better tolerated than the standard regimen comprising of cisplatin and etoposide phosphate. 3D light-sheet-fluorescence-microscopy of intact tumors revealed thinning and rarefication of tumor vessels, providing one explanation for reduced tumor growth. Thus, the combination of the two drugs gemcitabine and axitinib has favorable effects on preventing tumor progression in an orthotopic group 3 medulloblastoma xenograft model while exhibiting a favorable toxicity profile. The combination merits further exploration as a new approach to treat high-risk group 3 medulloblastoma.


2021 ◽  
Vol 84 ◽  
pp. 296
Author(s):  
Gideon Oluniran ◽  
James Blackwell ◽  
Emmanuel Reynaud ◽  
Marcin Krasny ◽  
Niall Colgan ◽  
...  

2020 ◽  
Vol 40 (10) ◽  
pp. 1975-1986
Author(s):  
Nicholas B Bèchet ◽  
Tekla M Kylkilahti ◽  
Bengt Mattsson ◽  
Martina Petrasova ◽  
Nagesh C Shanbhag ◽  
...  

Fluid transport in the perivascular space by the glia-lymphatic (glymphatic) system is important for the removal of solutes from the brain parenchyma, including peptides such as amyloid-beta which are implicated in the pathogenesis of Alzheimer’s disease. The glymphatic system is highly active in the sleep state and under the influence of certain of anaesthetics, while it is suppressed in the awake state and by other anaesthetics. Here we investigated whether light sheet fluorescence microscopy of whole optically cleared murine brains was capable of detecting glymphatic differences in sleep- and awake-mimicking anaesthesia, respectively. Using light-sheet imaging of whole brains, we found anaesthetic-dependent cerebrospinal fluid (CSF) influx differences, including reduced tracer influx along tertiary branches of the middle cerebral artery and reduced influx along dorsal and anterior penetrating arterioles, in the awake-mimicking anaesthesia. This study establishes that light sheet microscopy of optically cleared brains is feasible for quantitative analyses and can provide images of the entire glymphatic system in whole brains.


Sign in / Sign up

Export Citation Format

Share Document