scholarly journals MetaCell: analysis of single cell RNA-seq data using k-NN graph partitions

2018 ◽  
Author(s):  
Yael Baran ◽  
Arnau Sebe-Pedros ◽  
Yaniv Lubling ◽  
Amir Giladi ◽  
Elad Chomsky ◽  
...  

ABSTRACTSingle cell RNA-seq (scRNA-seq) has become the method of choice for analyzing mRNA distributions in heterogeneous cell populations. scRNA-seq only partially samples the cells in a tissue and the RNA in each cell, resulting in sparse data that challenge analysis. We develop a methodology that addresses scRNA-seq’s sparsity through partitioning the data into metacells: disjoint, homogenous and highly compact groups of cells, each exhibiting only sampling variance. Metacells constitute local building blocks for clustering and quantitative analysis of gene expression, while not enforcing any global structure on the data, thereby maintaining statistical control and minimizing biases. We illustrate the MetaCell framework by re-analyzing cell type and transcriptional gradients in peripheral blood and whole organism scRNA-seq maps. Our algorithms are implemented in the new MetaCell R/C++ software package.

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yael Baran ◽  
Akhiad Bercovich ◽  
Arnau Sebe-Pedros ◽  
Yaniv Lubling ◽  
Amir Giladi ◽  
...  

Abstract scRNA-seq profiles each represent a highly partial sample of mRNA molecules from a unique cell that can never be resampled, and robust analysis must separate the sampling effect from biological variance. We describe a methodology for partitioning scRNA-seq datasets into metacells: disjoint and homogenous groups of profiles that could have been resampled from the same cell. Unlike clustering analysis, our algorithm specializes at obtaining granular as opposed to maximal groups. We show how to use metacells as building blocks for complex quantitative transcriptional maps while avoiding data smoothing. Our algorithms are implemented in the MetaCell R/C++ software package.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juber Herrera-Uribe ◽  
Jayne E. Wiarda ◽  
Sathesh K. Sivasankaran ◽  
Lance Daharsh ◽  
Haibo Liu ◽  
...  

Pigs are a valuable human biomedical model and an important protein source supporting global food security. The transcriptomes of peripheral blood immune cells in pigs were defined at the bulk cell-type and single cell levels. First, eight cell types were isolated in bulk from peripheral blood mononuclear cells (PBMCs) by cell sorting, representing Myeloid, NK cells and specific populations of T and B-cells. Transcriptomes for each bulk population of cells were generated by RNA-seq with 10,974 expressed genes detected. Pairwise comparisons between cell types revealed specific expression, while enrichment analysis identified 1,885 to 3,591 significantly enriched genes across all 8 cell types. Gene Ontology analysis for the top 25% of significantly enriched genes (SEG) showed high enrichment of biological processes related to the nature of each cell type. Comparison of gene expression indicated highly significant correlations between pig cells and corresponding human PBMC bulk RNA-seq data available in Haemopedia. Second, higher resolution of distinct cell populations was obtained by single-cell RNA-sequencing (scRNA-seq) of PBMC. Seven PBMC samples were partitioned and sequenced that produced 28,810 single cell transcriptomes distributed across 36 clusters and classified into 13 general cell types including plasmacytoid dendritic cells (DC), conventional DCs, monocytes, B-cell, conventional CD4 and CD8 αβ T-cells, NK cells, and γδ T-cells. Signature gene sets from the human Haemopedia data were assessed for relative enrichment in genes expressed in pig cells and integration of pig scRNA-seq with a public human scRNA-seq dataset provided further validation for similarity between human and pig data. The sorted porcine bulk RNAseq dataset informed classification of scRNA-seq PBMC populations; specifically, an integration of the datasets showed that the pig bulk RNAseq data helped define the CD4CD8 double-positive T-cell populations in the scRNA-seq data. Overall, the data provides deep and well-validated transcriptomic data from sorted PBMC populations and the first single-cell transcriptomic data for porcine PBMCs. This resource will be invaluable for annotation of pig genes controlling immunogenetic traits as part of the porcine Functional Annotation of Animal Genomes (FAANG) project, as well as further study of, and development of new reagents for, porcine immunology.


2017 ◽  
Author(s):  
Jesse M. Zhang ◽  
Jue Fan ◽  
H. Christina Fan ◽  
David Rosenfeld ◽  
David N. Tse

ABSTRACTBackgroundWith the recent proliferation of single-cell RNA-Seq experiments, several methods have been developed for unsupervised analysis of the resulting datasets. These methods often rely on unintuitive hyperparameters and do not explicitly address the subjectivity associated with clustering.ResultsIn this work, we present DendroSplit, an interpretable framework for analyzing single-cell RNA-Seq datasets that addresses both the clustering interpretability and clustering subjectivity issues. DendroSplit offers a novel perspective on the single-cell RNA-Seq clustering problem motivated by the definition of “cell type,” allowing us to cluster using feature selection to uncover multiple levels of biologically meaningful populations in the data. We analyze several landmark single-cell datasets, demonstrating both the method’s efficacy and computational efficiency.ConclusionDendroSplit offers a clustering framework that is comparable to existing methods in terms of accuracy and speed but is novel in its emphasis on interpretabilty. We provide the full DendroSplit software package at https://github.com/jessemzhang/dendrosplit.


2021 ◽  
Author(s):  
Juber Herrera-Uribe ◽  
Jayne E Wiarda ◽  
Sathesh K Sivasankaran ◽  
Lance Daharsh ◽  
Haibo Liu ◽  
...  

Pigs are a valuable human biomedical model and an important protein source supporting global food security. The transcriptomes of peripheral blood immune cells in pigs were defined at the bulk cell-type and single cell levels. First, eight cell types were isolated in bulk from peripheral blood mononuclear cells (PBMCs) by cell sorting, representing Myeloid, NK cells and specific populations of T and B cells. Transcriptomes for each bulk population of cells were generated by RNA-seq with 10,974 expressed genes detected. Pairwise comparisons between cell types revealed specific expression, while enrichment analysis identified 1,885 to 3,591 significantly enriched genes across all 8 cell types. Gene Ontology analysis for the top 25% of significantly enriched genes (SEG) showed high enrichment of biological processes related to the nature of each cell type. Comparison of gene expression indicated highly significant correlations between pig cells and corresponding human PBMC bulk RNA-seq data available in Haemopedia. Second, higher resolution of distinct cell populations was obtained by single-cell RNA-sequencing (scRNA-seq) of PBMC. Seven PBMC samples were partitioned and sequenced that produced 28,810 single cell transcriptomes distributed across 36 clusters and classified into 13 general cell types including plasmacytoid dendritic cells (DC), conventional DCs, monocytes, B cell, conventional CD4 and CD8 αβ T cells, NK cells, and γδ T cells. Signature gene sets from the human Haemopedia data were assessed for relative enrichment in genes expressed in pig cells and integration of pig scRNA-seq with a public human scRNA-seq dataset provided further validation for similarity between human and pig data. The sorted porcine bulk RNAseq dataset informed classification of scRNA-seq PBMC populations; specifically, an integration of the datasets showed that the pig bulk RNAseq data helped define the CD4CD8 double-positive T cell populations in the scRNA-seq data. Overall, the data provides deep and well-validated transcriptomic data from sorted PBMC populations and the first single-cell transcriptomic data for porcine PBMCs. This resource will be invaluable for annotation of pig genes controlling immunogenetic traits as part of the porcine Functional Annotation of Animal Genomes (FAANG) project, as well as further study of, and development of new reagents for, porcine immunology.


Author(s):  
Qianhui Huang ◽  
Yu Liu ◽  
Yuheng Du ◽  
Lana X. Garmire
Keyword(s):  
Rna Seq ◽  

Genomics ◽  
2021 ◽  
Vol 113 (6) ◽  
pp. 3582-3598
Author(s):  
Xiujun Sun ◽  
Li Li ◽  
Biao Wu ◽  
Jianlong Ge ◽  
Yanxin Zheng ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3126
Author(s):  
Dominik Saul ◽  
Robyn Laura Kosinsky

The human aging process is associated with molecular changes and cellular degeneration, resulting in a significant increase in cancer incidence with age. Despite their potential correlation, the relationship between cancer- and ageing-related transcriptional changes is largely unknown. In this study, we aimed to analyze aging-associated transcriptional patterns in publicly available bulk mRNA-seq and single-cell RNA-seq (scRNA-seq) datasets for chronic myelogenous leukemia (CML), colorectal cancer (CRC), hepatocellular carcinoma (HCC), lung cancer (LC), and pancreatic ductal adenocarcinoma (PDAC). Indeed, we detected that various aging/senescence-induced genes (ASIGs) were upregulated in malignant diseases compared to healthy control samples. To elucidate the importance of ASIGs during cell development, pseudotime analyses were performed, which revealed a late enrichment of distinct cancer-specific ASIG signatures. Notably, we were able to demonstrate that all cancer entities analyzed in this study comprised cell populations expressing ASIGs. While only minor correlations were detected between ASIGs and transcriptome-wide changes in PDAC, a high proportion of ASIGs was induced in CML, CRC, HCC, and LC samples. These unique cellular subpopulations could serve as a basis for future studies on the role of aging and senescence in human malignancies.


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2021 ◽  
Author(s):  
Yakir A Reshef ◽  
Laurie Rumker ◽  
Joyce B Kang ◽  
Aparna Nathan ◽  
Megan B Murray ◽  
...  

As single-cell datasets grow in sample size, there is a critical need to characterize cell states that vary across samples and associate with sample attributes like clinical phenotypes. Current statistical approaches typically map cells to cell-type clusters and examine sample differences through that lens alone. Here we present covarying neighborhood analysis (CNA), an unbiased method to identify cell populations of interest with greater flexibility and granularity. CNA characterizes dominant axes of variation across samples by identifying groups of very small regions in transcriptional space, termed neighborhoods, that covary in abundance across samples, suggesting shared function or regulation. CNA can then rigorously test for associations between any sample-level attribute and the abundances of these covarying neighborhood groups. We show in simulation that CNA enables more powerful and accurate identification of disease-associated cell states than a cluster-based approach. When applied to published datasets, CNA captures a Notch activation signature in rheumatoid arthritis, redefines monocyte populations expanded in sepsis, and identifies a previously undiscovered T-cell population associated with progression to active tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document