scholarly journals Central sensitization increases the pupil dilation elicited by mechanical pinprick stimulation

2018 ◽  
Author(s):  
E.N. van den Broeke ◽  
D.M. Hartgerink ◽  
J Butler ◽  
J Lambert ◽  
A Mouraux

ABSTRACTHigh frequency electrical stimulation (HFS) of skin nociceptors triggers central sensitization, manifested as increased pinprick sensitivity of the skin surrounding the site at which HFS was applied. The aim of the present study was to compare the effects of HFS on pupil dilation and brain responses elicited by pinprick stimulation delivered in the area of increased pinprick sensitivity. In fourteen healthy volunteers HFS was applied to one of the two forearms. Before and twenty minutes after applying HFS, mechanical pinprick stimuli (64 mN and 96 mN) were delivered to the area surrounding the site at which HFS was applied as well as the contralateral control arm. During pinprick stimulation both the pupil size and electroencephalogram were recorded. HFS induced a clear and comparable increase in pinprick sensitivity for both the 64 and 96 mN stimulation intensity. Both pinprick stimulation intensities elicited a greater pupil dilation response when delivered to the area of increased pinprick sensitivity. However, this greater pupil dilation response was larger for the 64 mN compared to the 96 mN stimulation intensity. A similar pattern was observed for the negative wave of the pinprick-evoked brain potentials (PEPs), however, the increase was not significant for the 96 mN and showed only a trend towards significance for the 64 mN. These results show that there is a correspondence between the increase in pupil dilation and the increase in PEPs, but that pupil size is a more sensitive measure for detecting the effects of central sensitization than PEPs.

2019 ◽  
Vol 121 (5) ◽  
pp. 1621-1632 ◽  
Author(s):  
E. N. van den Broeke ◽  
D. M. Hartgerink ◽  
J. Butler ◽  
J. Lambert ◽  
A. Mouraux

High-frequency electrical stimulation (HFS) of skin nociceptors triggers central sensitization (CS), manifested as increased pinprick sensitivity of the skin surrounding the site of HFS. Our aim was to assess the effect of CS on pinprick-evoked pupil dilation responses (PDRs) and pinprick-evoked brain potentials (PEPs). We hypothesized that the increase in the positive wave of PEPs following HFS would result from an enhanced pinprick-evoked phasic response of the locus coeruleus-noradrenergic system (LC-NS), indicated by enhanced PDRs. In 14 healthy volunteers, 64- and 96-mN pinprick stimuli were delivered to the left and right forearms, before and 20 minutes after HFS was applied to one of the two forearms. Both PEPs and pinprick-evoked PDRs were recorded. After HFS, pinprick stimuli were perceived as more intense at the HFS-treated arm compared with baseline and control site, and this increase was similar for both stimulation intensities. Importantly, the pinprick-evoked PDR was also increased, and the increase was stronger for 64- compared with 96-mN stimulation. This is in line with our previous results showing a stronger increase of the PEP positivity at 64 vs. 96-mN stimulation and suggests that the increase in PEP positivity observed in previous studies could relate, at least in part, to enhanced LC-NS activity. However, there was no increase of the PEP positivity in the present study, indicating that enhanced LC-NS activity is not the only determinant of the HFS-induced enhancement of PEPs. Altogether, our results indicate that PDRs are more sensitive for detecting CS than PEPs. NEW & NOTEWORTHY We provide the first demonstration in humans that activity-dependent central sensitization increases pinprick-evoked autonomic arousal measured by enhanced pupil dilation response.


2018 ◽  
Author(s):  
José Biurrun Manresa ◽  
Ole Kæseler Andersen ◽  
André Mouraux ◽  
Emanuel N. van den Broeke

ABSTRACTHigh frequency electrical stimulation (HFS) of the skin induces increased pinprick sensitivity in the surrounding unconditioned skin (secondary hyperalgesia). Moreover, it has been shown that brief high intensity CO2 laser stimuli, activating both Aδ- and C-fiber nociceptors, are perceived as more intense when delivered in the area of secondary hyperalgesia. To investigate the contribution of A-fiber nociceptors to secondary hyperalgesia the present study assessed if the perception and brain responses elicited by low-intensity intra-epidermal electrical stimulation (IES), a method preferentially activating Aδ-fiber nociceptors, are increased in the area of secondary hyperalgesia. HFS was delivered to one of the two forearms of seventeen healthy volunteers. Mechanical pinprick stimulation and IES were delivered at both arms before HFS (T0), 20 minutes after HFS (T1) and 45 minutes after HFS (T2). In all participants, HFS induced an increase in pinprick perception at the HFS-treated arm, adjacent to the site of HFS. This increase was significant at both T1 and T2. HFS did not affect the percept elicited by IES, but did enhance the magnitude of the N2 wave of IES-evoked brain potentials, both at T1 and at T2. HFS induced a long-lasting enhancement of the N2 wave elicited by IES in the area of secondary hyperalgesia, indicating that HFS enhances the responsiveness of the central nervous system to nociceptive inputs conveyed by AMH-II nociceptors. However, we found no evidence that HFS affects the perception elicited by IES, which may suggest that AMH-II nociceptors do not contribute to HFS-induced secondary hyperalgesia.


2014 ◽  
Vol 112 (9) ◽  
pp. 2059-2066 ◽  
Author(s):  
Emanuel N. van den Broeke ◽  
André Mouraux

High-frequency electrical stimulation (HFS) of the human skin induces an increase in both mechanical and heat pain sensitivity in the surrounding unconditioned skin. The aim of this study was to investigate the effect of HFS on the intensity of perception and brain responses elicited by the selective activation of C fibers. HFS was applied to the ventral forearm of 15 healthy volunteers. Temperature-controlled CO2 laser stimulation was used to activate selectively low-threshold C-fiber afferents without concomitantly activating Aδ-fiber afferents. These stimuli were detected with reaction times compatible with the conduction velocity of C fibers. The intensity of perception and event-related brain potentials (ERPs) elicited by thermal stimuli delivered to the surrounding unconditioned skin were recorded before (T0) and after HFS (T1: 20 min after HFS; T2: 45 min after HFS). The contralateral forearm served as a control. Mechanical hyperalgesia following HFS was confirmed by measuring the change in the intensity of perception elicited by mechanical punctate stimuli. HFS resulted in increased intensity of perception to mechanical punctate stimulation and selective C-fiber thermal stimulation at both time points. In contrast, the N2 wave of the ERP elicited by C-fiber stimulation (679 ± 88 ms; means ± SD) was enhanced at T1 but not at T2. The P2 wave (808 ± 105 ms) was unaffected by HFS. Our results suggest that HFS enhances the sensitivity to thermal C-fiber input in the area of secondary hyperalgesia. However, there was no significant enhancement of the magnitude of the C-fiber ERPs at T2, suggesting that quickly adapting C fibers do not contribute to this enhancement.


2014 ◽  
Vol 111 (8) ◽  
pp. 1564-1573 ◽  
Author(s):  
Emanuel N. van den Broeke ◽  
André Mouraux

High-frequency electrical stimulation (HFS) of the human skin induces increased pain sensitivity in the surrounding unconditioned skin. The aim of the present study was to characterize the relative contribution of the different types of nociceptive and nonnociceptive afferents to the heterotopical hyperalgesia induced by HFS. In 17 healthy volunteers (9 men and 8 women), we applied HFS to the ventral forearm. The intensity of perception and event-related brain potentials (ERPs) elicited by vibrotactile stimuli exclusively activating nonnociceptive low-threshold mechanoreceptors and thermonociceptive stimuli exclusively activating heat-sensitive nociceptive afferents were recorded before and after HFS. The previously described mechanical hyperalgesia following HFS was confirmed by measuring the changes in the intensity of perception elicited by mechanical punctate stimuli. HFS increased the perceived intensity of both mechanical punctate and thermonociceptive stimuli applied to the surrounding unconditioned skin. The time course of the effect of HFS on the perception of mechanical and thermal nociceptive stimuli was similar. This indicates that HFS does not only induce mechanical hyperalgesia, but also induces heat hyperalgesia in the heterotopical area. Vibrotactile ERPs were also enhanced after HFS, indicating that nonnociceptive somatosensory input could contribute to the enhanced responses to mechanical pinprick stimuli. Finally, the magnitude of thermonociceptive ERPs was unaffected by HFS, indicating that type II A-fiber mechano-heat nociceptors, thought to be the primary contributor to these brain responses, do not significantly contribute to the observed heat hyperalgesia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isabell Hubert Lyall ◽  
Juhani Järvikivi

AbstractResearch suggests that listeners’ comprehension of spoken language is concurrently affected by linguistic and non-linguistic factors, including individual difference factors. However, there is no systematic research on whether general personality traits affect language processing. We correlated 88 native English-speaking participants’ Big-5 traits with their pupillary responses to spoken sentences that included grammatical errors, "He frequently have burgers for dinner"; semantic anomalies, "Dogs sometimes chase teas"; and statements incongruent with gender stereotyped expectations, such as "I sometimes buy my bras at Hudson's Bay", spoken by a male speaker. Generalized additive mixed models showed that the listener's Openness, Extraversion, Agreeableness, and Neuroticism traits modulated resource allocation to the three different types of unexpected stimuli. No personality trait affected changes in pupil size across the board: less open participants showed greater pupil dilation when processing sentences with grammatical errors; and more introverted listeners showed greater pupil dilation in response to both semantic anomalies and socio-cultural clashes. Our study is the first one demonstrating that personality traits systematically modulate listeners’ online language processing. Our results suggest that individuals with different personality profiles exhibit different patterns of the allocation of cognitive resources during real-time language comprehension.


2021 ◽  
Vol 11 (5) ◽  
pp. 639
Author(s):  
David Bergeron ◽  
Sami Obaid ◽  
Marie-Pierre Fournier-Gosselin ◽  
Alain Bouthillier ◽  
Dang Khoa Nguyen

Introduction: To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. Methods: We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. Results: Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. Conclusion: In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chris Donnelly ◽  
Jonathan Stegmüller ◽  
Anthony J. Blazevich ◽  
Fabienne Crettaz von Roten ◽  
Bengt Kayser ◽  
...  

AbstractThe effectiveness of neuromuscular electrical stimulation (NMES) for rehabilitation is proportional to the evoked torque. The progressive increase in torque (extra torque) that may develop in response to low intensity wide-pulse high-frequency (WPHF) NMES holds great promise for rehabilitation as it overcomes the main limitation of NMES, namely discomfort. WPHF NMES extra torque is thought to result from reflexively recruited motor units at the spinal level. However, whether WPHF NMES evoked force can be modulated is unknown. Therefore, we examined the effect of two interventions known to change the state of spinal circuitry in opposite ways on evoked torque and motor unit recruitment by WPHF NMES. The interventions were high-frequency transcutaneous electrical nerve stimulation (TENS) and anodal transcutaneous spinal direct current stimulation (tsDCS). We show that TENS performed before a bout of WPHF NMES results in lower evoked torque (median change in torque time-integral: − 56%) indicating that WPHF NMES-evoked torque might be modulated. In contrast, the anodal tsDCS protocol used had no effect on any measured parameter. Our results demonstrate that WPHF NMES extra torque can be modulated and although the TENS intervention blunted extra torque production, the finding that central contribution to WPHF NMES-evoked torques can be modulated opens new avenues for designing interventions to enhance WPHF NMES.


Sign in / Sign up

Export Citation Format

Share Document