scholarly journals In vitro characterization of human articular chondrocytes and chondroprogenitors derived from normal and osteoarthritic knee joints

2018 ◽  
Author(s):  
Elizabeth Vinod ◽  
Upasana Kachroo ◽  
Solomon Sathishkumar ◽  
P.R.J.V.C Boopalan

AbstractObjectiveCell based therapy optimization is constantly underway since regeneration of genuine hyaline cartilage is under par. Although single source derivation of chondrocytes and chondroprogenitors is advantageous, lack of a characteristic differentiating marker obscures clear identification of either cell type which is essential to create a biological profile and is also required to assess cell type superiority for cartilage repair. This study was the first attempt where characterization was performed on the two cell populations derived from the same human articular cartilage samples.DesignCells obtained from normal/osteoarthritic knee joints were expanded in culture (up to passage 10). Characterization studies was performed using flow cytometry, gene expression was studied using RT-PCR, growth kinetics and tri-lineage differentiation was also studied to construct a better biological profile of chondroprogenitors as well as chondrocytes.Results and conclusionsOur results suggest that sorting based on CD34(-), CD166(+) and CD146(+), instead of isolation using fibronectin adhesion assay (based on CD49e+/CD29+), would yield a population of cells primarily composed of chondroprogenitors which when derived from normal as opposed to osteoarthritic cartilage, could provide translatable results in terms of enhanced chondrogenesis and reduced hypertrophy; both indispensable for the field of cartilage regeneration.

Author(s):  
Isaac E. Erickson ◽  
Steven C. van Veen ◽  
Swarnali Sengupta ◽  
Sydney R. Kestle ◽  
Jason A. Burdick ◽  
...  

Articular cartilage pathology is common in the aged population. Numerous studies have shown that aged chondrocytes (CHs) are inferior to juvenile CHs in their ability to proliferate and produce cartilage-specific extracellular matrix proteins, potentially limiting their use in tissue engineering applications for cartilage restoration [1,2]. Mesenchymal stem cells (MSCs) are an alternative cell type that can be expanded in vitro while maintaining their ability to differentiate into cell types comparable to articular chondrocytes. However, organismal aging also influences human MSC proliferation [3,4] and multi-potential differentiation [5], though for chondrogenesis these findings are mixed, with some suggesting that aged progenitor cells retain their chondrogenic capacity [6]. The objective of this study was to assess age related differences in donor-matched CH and MSC potential for chondrogenic repair. In addition, the effects of the chondrogenic growth factor TGF-β3 on CHs and MSCs were evaluated.


Author(s):  
Minwook Kim ◽  
Jason A. Burdick ◽  
Robert L. Mauck

Mesenchymal stem cells (MSCs) are an attractive cell type for cartilage tissue engineering in that they can undergo chondrogenesis in a variety of 3D contexts [1]. Focused efforts in MSC-based cartilage tissue engineering have recently culminated in the formation of biologic materials possessing biochemical and functional mechanical properties that match that of the native tissue [2]. These approaches generally involve the continuous or intermittent application of pro-chondrogenic growth factors during in vitro culture. For example, in one recent study, we showed robust construct maturation in MSC-seeded hyaluronic acid (HA) hydrogels transiently exposed to high levels of TGF-β3 [3]. Despite the promise of this approach, MSCs are a multipotent cell type and retain a predilection towards hypertrophic phenotypic conversion (i.e., bone formation) when removed from a pro-chondrogenic environment (e.g., in vivo implantation). Indeed, even in a chondrogenic environment, many MSC-based cultures express pre-hypertrophic markers, including type X collagen, MMP13, and alkaline phosphatase [4]. To address this issue, recent studies have investigated co-culture of human articular chondrocytes and MSCs in both pellet and hydrogel environments. Chondrocytes appear to enhance the initial efficiency of MSC chondrogenic conversion, as well as limit hypertrophic changes in some instances (potentially via secretion of PTHrP and/or other factors) [5–7]. While these findings are intriguing, articular cartilage has a unique depth-dependent morphology including zonal differences in chondrocyte identity. Ng et al. showed that zonal chondrocytes seeded in a bi-layered agarose hydrogel construct can recreate depth-dependent cellular and mechanical heterogeneity, suggesting that these identities are retained with transfer to 3D culture systems [8]. Further, Cheng et al. showed that differences in matrix accumulation and hypertrophy in zonal chondrocytes was controlled by bone morphogenic protein [9]. To determine whether differences in zonal chondrocyte identity influences MSC fate decisions, we evaluated functional properties and phenotypic stability in photocrosslinked hyaluronic acid (HA) hydrogels using distinct, zonal chondrocyte cell fractions co-cultured with bone marrow derived MSCs.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Jun Qin ◽  
Yan-song Liu ◽  
Jun Liu ◽  
Jing Li ◽  
Yang Tan ◽  
...  

This study investigated the effect ofAngelica sinensispolysaccharides (APS-3c) on rat osteoarthritis (OA) modelin vivoand rat interleukin-1-beta- (IL-1β-) stimulated chondrocytesin vitro. APS-3c was administrated into rat OA knee joints and had protective effects on rat OA cartilagein vivo. Primary rat articular chondrocytes were cotreated with APS-3c and IL-1β  in vitro. 2~50 μg/mL APS-3c had no effect on chondrocytes viability, whereas it increased the proteoglycans (PGs) synthesis inhibited by IL-1β. Microarray analysis showed that the significant changes were concentrated in the genes which were involved in PGs synthesis. RT-PCR confirmed that treatment with APS-3c increased the mRNA expression of aggrecan and glycosyltransferases (GTs) inhibited by IL-1βbut did not affect the mRNA expression of matrix-degrading enzymes. These results indicate that APS-3c can improve PGs synthesis of chondrocytes on rat OA modelin vivoand IL-1β-stimulated chondrocytesin vitro, which is due to the promotion of the expression of aggrecan and GTs involved in PGs synthesis but not the inhibition of the expression of matrix-degrading enzymes. Our findings suggest the clinical relevance of APS-3c in the prospective of future alternative medical treatment for OA.


2001 ◽  
Vol 114 (21) ◽  
pp. 3813-3822 ◽  
Author(s):  
Rita Dreier ◽  
Shona Wallace ◽  
Susanne Fuchs ◽  
Peter Bruckner ◽  
Susanne Grässel

Cells of the monocyte/macrophage lineage are involved in the development of inflammatory joint diseases such as rheumatoid arthritis. This disease is characterized by cartilage degradation and synovial membrane inflammation with a progressive loss of joint function. The pathological processes are still not well understood. Therefore it would be interesting to develop a suitable experimental in vitro model system for defined studies of monocyte/macrophage and chondrocyte interactions at the molecular level. For that purpose we cocultured chondrocytes from adult human articular cartilage with human monocytes and macrophages for defined periods of time in agarose without addition of serum. We performed zymographic and western blot analysis of culture medium, completed by quantitative RT-PCR of each chondrocyte, monocyte and macrophage RNA, respectively. The reliability of the newly established coculture systems is confirmed by causing a clear decrease of intact aggrecan in the coculture medium plus concurrent appearance of additional smaller fragments and a reduction of chondrocyte aggrecan and collagen II gene expression in the presence of monocytes. In culture medium from cocultures we detected active forms of the matrix metalloproteinases MMP-1, MMP-3 and MMP-9 accompanied by induction of gene expression of MMP-1, membrane type 1 MMP (MT1-MMP) and tissue inhibitor of metalloproteinase 2 (TIMP-2) in chondrocytes. No gene expression of MMP-9 was detectable in chondrocytes, the enzyme was solely expressed in monocytes and macrophages and was downregulated in the presence of chondrocytes. Our results suggest that MMP-9 protein in coculture medium originated from monocytes and macrophages but activation required chondrocyte-derived factors. Because addition of plasmin, a partial activator of pro-MMP-3 and pro-MMP-1, enhanced the activation of pro-MMP-9 and pro-MMP-1 in cocultures but not in monocultured macrophages, and the presence of MMP-3 inhibitor II prevented pro-MMP-9 activation, we assumed a stepwise activation process of pro-MMP-9 that is dependent on the presence of at least MMP-3 and possibly also MMP-1.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1052 ◽  
Author(s):  
Simonetta Carluccio ◽  
Daniela Martinelli ◽  
Maria Elisabetta Federica Palamà ◽  
Rui Cruz Pereira ◽  
Roberto Benelli ◽  
...  

Regenerative strategies for human articular cartilage are still challenging despite the presence of resident progenitor cell population. Today, many efforts in the field of regenerative medicine focus on the use of platelet derivatives due to their ability to reactivate endogenous mechanisms supporting tissue repair. While their use in orthopedics continues, mechanisms of action and efficacy need further characterization. We describe that the platelet lysate (PL) is able to activate chondro-progenitor cells in a terminally differentiated cartilage tissue. Primary cultures of human articular chondrocytes (ACs) and cartilage explants were set up from donor hip joint biopsies and were treated in vitro with PL. PL recruited a chondro-progenitors (CPCs)-enriched population from ex vivo cartilage culture, that showed high proliferation rate, clonogenicity and nestin expression. CPCs were positive for in vitro tri-lineage differentiation and formed hyaline cartilage-like tissue in vivo without hypertrophic fate. Moreover, the secretory profile of CPCs was analyzed, together with their migratory capabilities. Some CPC-features were also induced in PL-treated ACs compared to fetal bovine serum (FBS)-control ACs. PL treatment of human articular cartilage activates a stem cell niche responsive to injury. These facts can improve the PL therapeutic efficacy in cartilage applications.


2020 ◽  
Vol 21 (20) ◽  
pp. 7556
Author(s):  
Miho Kuwahara ◽  
Koichi Kadoya ◽  
Sei Kondo ◽  
Shanqi Fu ◽  
Yoshiko Miyake ◽  
...  

Aging is a major risk factor of osteoarthritis, which is characterized by the degeneration of articular cartilage. CCN3, a member of the CCN family, is expressed in cartilage and has various physiological functions during chondrocyte development, differentiation, and regeneration. Here, we examine the role of CCN3 in cartilage maintenance. During aging, the expression of Ccn3 mRNA in mouse primary chondrocytes from knee cartilage increased and showed a positive correlation with p21 and p53 mRNA. Increased accumulation of CCN3 protein was confirmed. To analyze the effects of CCN3 in vitro, either primary cultured human articular chondrocytes or rat chondrosarcoma cell line (RCS) were used. Artificial senescence induced by H2O2 caused a dose-dependent increase in Ccn3 gene and CCN3 protein expression, along with enhanced expression of p21 and p53 mRNA and proteins, as well as SA-β gal activity. Overexpression of CCN3 also enhanced p21 promoter activity via p53. Accordingly, the addition of recombinant CCN3 protein to the culture increased the expression of p21 and p53 mRNAs. We have produced cartilage-specific CCN3-overexpressing transgenic mice, and found degradative changes in knee joints within two months. Inflammatory gene expression was found even in the rib chondrocytes of three-month-old transgenic mice. Similar results were observed in human knee articular chondrocytes from patients at both mRNA and protein levels. These results indicate that CCN3 is a new senescence marker of chondrocytes, and the overexpression of CCN3 in cartilage may in part promote chondrocyte senescence, leading to the degeneration of articular cartilage through the induction of p53 and p21.


1990 ◽  
Vol 97 (2) ◽  
pp. 361-371 ◽  
Author(s):  
C.W. Archer ◽  
J. McDowell ◽  
M.T. Bayliss ◽  
M.D. Stephens ◽  
G. Bentley

Human articular cartilage has been separated into surface (approx. 15% of tissue depth) and deep zones (remaining tissue) and the constituent chondrocytes released by enzymic digestion. Subsequent culture either as a low density monolayer or as a suspension over agarose revealed distinct morphological and synthetic behaviour in the two populations. Whilst in monolayer these morphological differences disappeared with time in culture, over agarose they remained. Surface zone cells formed two types of cell cluster; one that was highly cellular with little extracellular matrix, and the other less frequent, which formed copious amounts of fibrillar matrix. Both types of cluster were surrounded by a layer of flattened chondrocytes. In contrast, deep cells formed a single cluster type that lacked a surrounding cell layer, but formed large amounts of sparse cartilage-like matrix and comprised morphologically typical chondrocytes. In monolayer, both populations gradually ceased to synthesise cartilage matrix components with the exception of link protein. In suspension, whilst the chondrogenic phenotype per se was preserved, there was, nevertheless, a loss in qualitative synthetic heterogeneity, which exists between surface and deep cells, that was not accompanied by changes in the differential rate of 35S incorporation into proteoglycan. Under these conditions, surface cells that normally do not synthesise keratan sulphate initiated de novo synthesis of this glycosaminoglycan. Consequently, it appears that the observed modulation in synthetic ability of the cell sub-populations is independent of the cluster morphology, which, once established, remains constant throughout the culture period.


Sign in / Sign up

Export Citation Format

Share Document