scholarly journals Characterization of α3 Glycine Receptors with Ginkgolide B and Picrotoxin

2018 ◽  
Author(s):  
Sampurna Chakrabarti ◽  
Anil Neelakantan ◽  
Malcolm M. Slaughter

AbstractGinkgolide B (GB) and picrotoxin (PTX) are antagonists of the major inhibitory receptors of the central nervous system: GABA and glycine receptors (GlyRs). GlyRs contain one or more of the four alpha subunit isoforms of which α1 and α2 have been extensively studied. This report compares GB and PTX block of α3 GlyRs expressed in HEK 293 cells, using whole-cell patch clamp techniques. In CNS, α3 exists as a heteropentamer in conjunction with beta subunits in a 2α:3β ratio. Thus, the nature of block was also tested in α3β heteromeric glycine receptors. GB and PTX blocked α3 GlyRs both in the presence (liganded state) and absence of glycine (unliganded state). This property is unique to α3 subunits; α1 and α2 subunits are only blocked in the liganded state. The GB block of α3 GlyRs is voltage-dependent (more effective when the cell is depolarized) and non-competitive, while the PTX block is competitive and not voltage-dependent. The heteromeric and homomeric α3 GlyRs recovered significantly faster from unliganded GB block compared to liganded GB block, but no such distinction was found for PTX block suggesting more than one binding site for GB. This study sheds light on features of the α3 GlyR that distinguish it from the more widely studied α1 and α2 subunits. Understanding these properties can help decipher the physiological functioning of GlyRs in the CNS and may permit development of subunit specific drugs.

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0161450 ◽  
Author(s):  
Zhixin Lin ◽  
Sonia Santos ◽  
Karen Padilla ◽  
David Printzenhoff ◽  
Neil A. Castle

2009 ◽  
Vol 87 (11) ◽  
pp. 923-932 ◽  
Author(s):  
Mária Drígeľová ◽  
Bohumila Tarabová ◽  
Gunars Duburs ◽  
Ľubica Lacinová

Cerebrocrast is a novel lipophilic dihydropyridine derivative with potential neuroprotective and antidiabetic properties. We have analyzed its interaction with L-type (CaV1.2b) and T-type (CaV3.1) calcium channels using a whole-cell patch clamp in HEK 293 cells. Cerebrocrast inhibited current flux through both CaV1.2b and CaV3.1 channels. In both cases, the drug was about 10-fold less effective than neutral dihydropyridines, but more efficient than the charged dihydropyridine amlodipine. IC50 values for the CaV1.2b channel were 586 ± 96 nmol/L and 178 ± 78 nmol/L at holding potentials of –80 mV and –50 mV, respectively. Approximately 50 µmol/L of cerebrocrast was needed to block 50% of the current amplitude in the CaV3.1 channel, but this inhibition was not facilitated by shifting the holding potential from –100 mV to –70 mV. Cerebrocrast did not alter current kinetics in either investigated channel, and the inhibition of calcium current was partly reversible or irreversible. In conclusion, the interaction of cerebrocrast with CaV3.1 lacked the typical characteristics of a state-dependent interaction, and voltage-dependent inhibition of CaV1.2b was consistent with partial interaction with the inactivated state of the channel.


2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


2005 ◽  
Vol 94 (6) ◽  
pp. 4491-4501 ◽  
Author(s):  
Fan Jia ◽  
Leonardo Pignataro ◽  
Claude M. Schofield ◽  
Minerva Yue ◽  
Neil L. Harrison ◽  
...  

Whole cell patch-clamp recordings were obtained from thalamic ventrobasal (VB) and reticular (RTN) neurons in mouse brain slices. A bicuculline-sensitive tonic current was observed in VB, but not in RTN, neurons; this current was increased by the GABAA receptor agonist 4,5,6,7-tetrahydroisothiazolo-[5,4-c]pyridine-3-ol (THIP; 0.1 μM) and decreased by Zn2+ (50 μM) but was unaffected by zolpidem (0.3 μM) or midazolam (0.2 μM). The pharmacological profile of the tonic current is consistent with its generation by activation of GABAA receptors that do not contain the α1 or γ2 subunits. GABAA receptors expressed in HEK 293 cells that contained α4β2δ subunits showed higher sensitivity to THIP (gaboxadol) and GABA than did receptors made up from α1β2δ, α4β2γ2s, or α1β2γ2s subunits. Western blot analysis revealed that there is little, if any, α3 or α5 subunit protein in VB. In addition, co-immunoprecipitation studies showed that antibodies to the δ subunit could precipitate α4, but not α1 subunit protein. Confocal microscopy of thalamic neurons grown in culture confirmed that α4 and δ subunits are extensively co-localized with one another and are found predominantly, but not exclusively, at extrasynaptic sites. We conclude that thalamic VB neurons express extrasynaptic GABAA receptors that are highly sensitive to GABA and THIP and that these receptors are most likely made up of α4β2δ subunits. In view of the critical role of thalamic neurons in the generation of oscillatory activity associated with sleep, these receptors may represent a principal site of action for the novel hypnotic agent gaboxadol.


1992 ◽  
Vol 68 (1) ◽  
pp. 85-92 ◽  
Author(s):  
M. Mynlieff ◽  
K. G. Beam

1. Calcium channel currents were measured with the whole-cell patch clamp technique in cultured, identified mouse motoneurons. Three components of current were operationally defined on the basis of voltage dependence, kinetics, and pharmacology. 2. Test potentials to -50 mV or greater (10 mM external Ca2+) elicited a low-voltage activated T-type current that was transient (decaying to baseline in less than 200 ms) and had a relatively slow time to peak (20-50 ms). A 1-s prepulse to -45 mV produced approximately half-maximal inactivation of this T current. 3. Two high-voltage activated (HVA) components of current (1 transient and 1 sustained) were activated by test potentials to -20 mV or greater (10 mM external Ca2+). A 1-s prepulse to -35 mV produced approximately half-maximal inactivation of the transient component without affecting the sustained component. 4. When Ba2+ was substituted for Ca2+ as the charge carrier, activation of the HVA components was shifted in the hyperpolarizing direction, and the relative amplitude of the transient HVA component was reduced. 5. Amiloride (1-2 mM) caused a reversible, partial block of the T current without affecting the HVA components. 6. The dihydropyridine agonist isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5-nitro-3- pyridine-carboxylate [(+)-SDZ 202-791, 100 nM-1 microM)] shifted the activation of the sustained component of HVA current to more negative potentials and increased its maximal amplitude. Additionally, (+)-SDZ 202-791 caused the appearance of a slowed component of tail current.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 98 (4) ◽  
pp. 2274-2284 ◽  
Author(s):  
M. Cataldi ◽  
V. Lariccia ◽  
V. Marzaioli ◽  
A. Cavaccini ◽  
G. Curia ◽  
...  

We employed whole cell patch-clamp recordings to establish the effect of Zn2+ on the gating the brain specific, T-type channel isoform CaV3.3 expressed in HEK-293 cells. Zn2+ (300 μM) modified the gating kinetics of this channel without influencing its steady-state properties. When inward Ca2+ currents were elicited by step depolarizations at voltages above the threshold for channel opening, current inactivation was significantly slowed down while current activation was moderately affected. In addition, Zn2+ slowed down channel deactivation but channel recovery from inactivation was only modestly changed. Zn2+ also decreased whole cell Ca2+ permeability to 45% of control values. In the presence of Zn2+, Ca2+ currents evoked by mock action potentials were more persistent than in its absence. Furthermore, computer simulation of action potential generation in thalamic reticular cells performed to model the gating effect of Zn2+ on T-type channels (while leaving the kinetic parameters of voltage-gated Na+ and K+ unchanged) revealed that Zn2+ increased the frequency and the duration of burst firing, which is known to depend on T-type channel activity. In line with this finding, we discovered that chelation of endogenous Zn2+ decreased the frequency of occurrence of ictal-like epileptiform discharges in rat thalamocortical slices perfused with medium containing the convulsant 4-aminopyridine (50 μM). These data demonstrate that Zn2+ modulates CaV3.3 channel gating thus leading to increased neuronal excitability. We also propose that endogenous Zn2+ may have a role in controlling thalamocortical oscillations.


2009 ◽  
Vol 29 (3) ◽  
pp. 203-212 ◽  
Author(s):  
Xin-Ming Su ◽  
Wei Ren ◽  
Chao Lu ◽  
Ji-Qing Chen ◽  
Sheng-Hua Wu ◽  
...  

1997 ◽  
Vol 49 (1-2) ◽  
pp. 89-94 ◽  
Author(s):  
Kazuko Sakata ◽  
Kohji Sato ◽  
Patrick Schloss ◽  
Heinrich Betz ◽  
Shoichi Shimada ◽  
...  

2018 ◽  
Vol 293 (43) ◽  
pp. 16546-16558 ◽  
Author(s):  
Mohammad-Reza Ghovanloo ◽  
Noah Gregory Shuart ◽  
Janette Mezeyova ◽  
Richard A. Dean ◽  
Peter C. Ruben ◽  
...  

Cannabis sativa contains many related compounds known as phytocannabinoids. The main psychoactive and nonpsychoactive compounds are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), respectively. Much of the evidence for clinical efficacy of CBD-mediated antiepileptic effects has been from case reports or smaller surveys. The mechanisms for CBD's anticonvulsant effects are unclear and likely involve noncannabinoid receptor pathways. CBD is reported to modulate several ion channels, including sodium channels (Nav). Evaluating the therapeutic mechanisms and safety of CBD demands a richer understanding of its interactions with central nervous system targets. Here, we used voltage-clamp electrophysiology of HEK-293 cells and iPSC neurons to characterize the effects of CBD on Nav channels. Our results show that CBD inhibits hNav1.1–1.7 currents, with an IC50 of 1.9–3.8 μm, suggesting that this inhibition could occur at therapeutically relevant concentrations. A steep Hill slope of ∼3 suggested multiple interactions of CBD with Nav channels. CBD exhibited resting-state blockade, became more potent at depolarized potentials, and also slowed recovery from inactivation, supporting the idea that CBD binding preferentially stabilizes inactivated Nav channel states. We also found that CBD inhibits other voltage-dependent currents from diverse channels, including bacterial homomeric Nav channel (NaChBac) and voltage-gated potassium channel subunit Kv2.1. Lastly, the CBD block of Nav was temperature-dependent, with potency increasing at lower temperatures. We conclude that CBD's mode of action likely involves 1) compound partitioning in lipid membranes, which alters membrane fluidity affecting gating, and 2) undetermined direct interactions with sodium and potassium channels, whose combined effects are loss of channel excitability.


Blood ◽  
2002 ◽  
Vol 100 (10) ◽  
pp. 3626-3632 ◽  
Author(s):  
Barbara Plaimauer ◽  
Klaus Zimmermann ◽  
Dirk Völkel ◽  
Gerhard Antoine ◽  
Randolf Kerschbaumer ◽  
...  

Deficient von Willebrand factor (VWF) degradation has been associated with thrombotic thrombocytopenic purpura (TTP). In hereditary TTP, the specific VWF-cleaving protease (VWF-cp) is absent or functionally defective, whereas in the nonfamilial, acquired form of TTP, an autoantibody inhibiting VWF-cp activity is found transiently in most patients. The gene encoding for VWF-cp has recently been identified as a member of the metalloprotease family and designatedADAMTS13, but the functional activity of the ADAMTS13 gene product has not been verified. To establish the functional activity of recombinant VWF-cp, we cloned the complete cDNA sequence in a eukaryotic expression vector and transiently expressed the encoded recombinant ADAMTS13 in HEK 293 cells. The expressed protein degraded VWF multimers and proteolytically cleaved VWF to the same fragments as those generated by plasma VWF-cp. Furthermore, recombinant ADAMTS13-mediated degradation of VWF multimers was entirely inhibited in the presence of plasma from a patient with acquired TTP. These data show that ADAMTS13 is responsible for the physiologic proteolytic degradation of VWF multimers.


Sign in / Sign up

Export Citation Format

Share Document