scholarly journals Counter-stimuli Inhibit GRPR Neurons via GABAergic Signaling in the Spinal Cord

2018 ◽  
Author(s):  
Rita Bardoni ◽  
Devin M. Barry ◽  
Hui Li ◽  
Kai-Feng Shen ◽  
Joseph Jeffry ◽  
...  

AbstractA myriad of counter-stimuli, including algogens and cooling, could inhibit itch sensation; however, the underlying molecular and neural mechanisms remain poorly understood. Here, we show that the spinal neurons expressing gastrin releasing peptide receptor (GRPR) primarily comprise excitatory interneurons that receive direct and indirect inputs from C and Aδ fibers and form contacts with projection neurons expressing the neurokinin 1 receptor (NK1R). Optical or chemogenetic activation of GRPR neurons evokes itch behavior that is partly dependent on NK1R activation. Importantly, we show that noxious or cooling counter-stimuli inhibit the activity of GRPR neurons via GABAergic signaling. By contrast, capsaicin, which could evoke a mix of itch and pain sensations, could exert both excitatory and inhibitory effects on GRPR neurons. These data strengthen the role of GRPR neurons as a key circuit for itch transmission and illustrate a spinal mechanism whereby counter-stimuli inhibit itch by suppressing the function of GRPR neurons.HighlightsActivation of GRPR neurons evokes itch and is dependent upon NK1R activationGRPR neurons receive both direct and indirect inputs from C/Aδ fibersCounter-stimuli inhibit GRPR neurons via GABAergic signalingIncreased excitability of GRPR neurons in chronic itch condition

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rita Bardoni ◽  
Kai-Feng Shen ◽  
Hui Li ◽  
Joseph Jeffry ◽  
Devin M. Barry ◽  
...  

Abstract It has been known that algogens and cooling could inhibit itch sensation; however, the underlying molecular and neural mechanisms remain poorly understood. Here, we show that the spinal neurons expressing gastrin releasing peptide receptor (GRPR) primarily comprise excitatory interneurons that receive direct and indirect inputs from C and Aδ fibers and form contacts with projection neurons expressing the neurokinin 1 receptor (NK1R). Importantly, we show that noxious or cooling agents inhibit the activity of GRPR neurons via GABAergic signaling. By contrast, capsaicin, which evokes a mix of itch and pain sensations, enhances both excitatory and inhibitory spontaneous synaptic transmission onto GRPR neurons. These data strengthen the role of GRPR neurons as a key circuit for itch transmission and illustrate a spinal mechanism whereby pain inhibits itch by suppressing the function of GRPR neurons.


2020 ◽  
Author(s):  
Tayler D. Sheahan ◽  
Charles A. Warwick ◽  
Louis G. Fanien ◽  
Sarah E. Ross

AbstractThe neurokinin-1 receptor (NK1R, encoded by Tacr1) is expressed in spinal dorsal horn neurons and has been suggested to mediate itch. However, previous studies relied heavily on neurotoxic ablation of NK1R spinal neurons, which limited further dissection of their function in spinal itch circuitry. Thus, we leveraged a newly developed Tacr1CreER mouse line to characterize the role of NK1R spinal neurons in itch. We show that pharmacological activation of spinal NK1R and chemogenetic activation of Tacr1CreER spinal neurons increases itch behavior, whereas pharmacological inhibition of spinal NK1R suppresses itch behavior. We use fluorescence in situ hybridization to characterize the endogenous expression of Tacr1 throughout the superficial and deeper dorsal horn, as well as the lateral spinal nucleus.Retrograde labeling studies from the parabrachial nucleus show that less than 20% of superficial Tacr1CreER dorsal horn neurons are spinal projection neurons, and thus the majority of Tacr1CreER are local interneurons. We then use a combination of in situ hybridization and ex vivo two-photon Ca2+ imaging of the spinal cord to establish that NK1R and the gastrin-releasing peptide receptor (GRPR) are coexpressed within a subpopulation of excitatory superficial dorsal horn neurons. These findings are the first to describe a role for NK1R interneurons in itch and extend our understanding of the complexities of spinal itch circuitry.


2019 ◽  
Author(s):  
Augusto Escalante ◽  
Rüdiger Klein

SummaryChronic itch represents an incapacitating burden on patients suffering a wide spectrum of diseases. Despite recent advances in our understanding of the cells and circuits implicated in the processing of itch information, chronic itch often presents itself without apparent cause. Here, we identify a spinal subpopulation of inhibitory neurons defined by the expression of Ptf1a involved in gating mechanosensory information self-generated during movement. These neurons receive tactile and motor input and establish presynaptic inhibitory contacts on mechanosensory afferents. Loss of Ptf1a neurons leads to increased hairy skin sensitivity and chronic itch, at least partially mediated through the classic itch pathway involving gastrin releasing peptide receptor (GRPR) spinal neurons. Conversely, chemogenetic activation of GRPR neurons elicits itch which is suppressed by concomitant activation of Ptf1a neurons. These findings shed new light on the circuit mechanisms implicated in chronic itch and open novel targets for therapy developments.Highlights*Ptf1a specifies adult spinal presynaptic neurons contacting cutaneous afferents*Loss of spinal Ptf1a+ neurons leads to self-generated itch and excessive grooming*Absence of Ptf1a+ neurons increases hairy skin sensitivity which triggers scratching*GRPR+ neurons act downstream of Ptf1a+ neurons in spontaneous itch


2018 ◽  
Author(s):  
Devin M. Barry ◽  
Xue-Ting Liu ◽  
Qianyi Yang ◽  
Xian-Yu Liu ◽  
Xiansi Zeng ◽  
...  

AbstractGastrin-releasing peptide (GRP) is a putative itch-specific neurotransmitter, but definite evidence in the dorsal root ganglion (DRG) and spinal cord is lacking. We generated and validated a Grp-Cre knock-in (GrpCre-KI) mouse line whereby Grp neurons are genetically labeled. Cre-dependent marking analysis revealed exclusive innervation of the upper epidermis of the skin by GRP fibers. Importantly, optical stimulation of Grp fibers expressing channel rhodopsin (ChR2) in the skin evoked itch but not pain-related scratching behaviors, while conditional deletion of Grp in sensory neurons attenuated non-histaminergic itch. In contrast, intersectional genetic ablation of spinal Grp neurons did not affect itch nor pain transmission. Our study demonstrates a role of GRP in sensory neurons in itch and suggests that GRP sensory neurons are dedicated to itch transmission. GrpCre-KI mice provide a long-sought avenue for investigating peripheral coding mechanism of itch and further interrogation of itch-nerve fibers in the skin under chronic pruritus.HighlightsValidated expression of a Grp-Cre knock-in line in sensory neurons that innervate the skinOpto-activation of Grp sensory neurons evokes itch behaviorConditional deletion of Grp in sensory neurons reduces non-histaminergic itch behaviorIntersectional ablation of Grp spinal neurons does not affect itch or pain behaviors


Medicines ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 76 ◽  
Author(s):  
Ian P. Harrison ◽  
Fabrizio Spada

Chronic itch is an unpleasant sensation that triggers a desire to scratch that lasts for six weeks or more. It is a major diagnostic symptom of myriad diseases, including atopic dermatitis for which it is the most prominent feature. Chronic itch can be hugely debilitating for the sufferer, damaging in terms of both the monetary cost of treatment and its socioeconomic effects, and few treatment options exist that can adequately control it. Corticosteroids remain the first line treatment strategy for atopic dermatitis, but due to the risks associated with long-term use of corticosteroids, and the drawbacks of other topical options such as topical calcineurin inhibitors and capsaicin, topical options for itch management that are efficacious and can be used indefinitely are needed. In this review, we detail the pathophysiology of chronic pruritus, its key features, and the disease most commonly associated with it. We also assess the role of the skin and its components in maintaining a healthy barrier function, thus reducing dryness and the itch sensation. Lastly, we briefly detail examples of topical options for the management of chronic pruritus that can be used indefinitely, overcoming the risk associated with long-term use of corticosteroids.


2022 ◽  
Vol 12 ◽  
Author(s):  
Wen Wang ◽  
Qiaoyun Li ◽  
Zhongqiu Zhao ◽  
Yutong Liu ◽  
Yi Wang ◽  
...  

Paeonol is a bioactive phenol presents mainly in Paeonia suffruticosa Andr. (Paeoniaceae), Paeonia lactiflora Pall., and Dioscorea japonica Thunb. (Dioscoreaceae), harboring various pharmacological activities including anti-inflammatory, antioxidant, immune regulatory activity and reverse chemoresistance. Recent reports revealed paeonol exhibited good effects on chronic dermatitis, such as atopic dermatitis (AD) and psoriasis. However, whether paeonol is effective for dry skin disease and its mechanism of action still remain unclear. In this study, we analysed the effects of paeonol on a mouse model of dry skin treated with acetone-ether-water (AEW), which showed impressive activities in reducing scratching behavior and skin inflammation. To elucidate the underlying molecular targets for the anti-pruritic ability of paeonol, we screened the expression of possible chemokine pathways in the spinal cord. The expression of CXCR3 was significantly alleviated by paeonol, which increased greatly in the spinal neurons of AEW mice. In addition, treatment of paeonol significantly inhibited AEW-induced expression of astrocyte activity-dependent genes including Tlr4, Lcn2 and Hspb1 et al. The inhibitory effects of paeonol on scratching behavior and astrocytic activation in the spinal cord induced by AEW were abolished when CXCR3 was antagonized or genetically ablated. Taken together, our results indicated that paeonol can ameliorate AEW-induced inflammatory response and itching behavior, and reduce the expression of spinal astrocyte activity-dependent genes induced by AEW, which are driven by CXCR3.


Author(s):  
Krista Rantakari ◽  
Olli-Pekka Rinta-Koski ◽  
Marjo Metsäranta ◽  
Jaakko Hollmén ◽  
Simo Särkkä ◽  
...  

Abstract Background Extremely low gestational age newborns (ELGANs) are at risk of neurodevelopmental impairments that may originate in early NICU care. We hypothesized that early oxygen saturations (SpO2), arterial pO2 levels, and supplemental oxygen (FiO2) would associate with later neuroanatomic changes. Methods SpO2, arterial blood gases, and FiO2 from 73 ELGANs (GA 26.4 ± 1.2; BW 867 ± 179 g) during the first 3 postnatal days were correlated with later white matter injury (WM, MRI, n = 69), secondary cortical somatosensory processing in magnetoencephalography (MEG-SII, n = 39), Hempel neurological examination (n = 66), and developmental quotients of Griffiths Mental Developmental Scales (GMDS, n = 58). Results The ELGANs with later WM abnormalities exhibited lower SpO2 and pO2 levels, and higher FiO2 need during the first 3 days than those with normal WM. They also had higher pCO2 values. The infants with abnormal MEG-SII showed opposite findings, i.e., displayed higher SpO2 and pO2 levels and lower FiO2 need, than those with better outcomes. Severe WM changes and abnormal MEG-SII were correlated with adverse neurodevelopment. Conclusions Low oxygen levels and high FiO2 need during the NICU care associate with WM abnormalities, whereas higher oxygen levels correlate with abnormal MEG-SII. The results may indicate certain brain structures being more vulnerable to hypoxia and others to hyperoxia, thus emphasizing the role of strict saturation targets. Impact This study indicates that both abnormally low and high oxygen levels during early NICU care are harmful for later neurodevelopmental outcomes in preterm neonates. Specific brain structures seem to be vulnerable to low and others to high oxygen levels. The findings may have clinical implications as oxygen is one of the most common therapies given in NICUs. The results emphasize the role of strict saturation targets during the early postnatal period in preterm infants.


2020 ◽  
Vol 37 (12) ◽  
pp. 852.3-853
Author(s):  
Angharad Griffiths ◽  
Ikechukwu Okafor ◽  
Thomas Beattie

Aims/Objectives/BackgroundVP shunts are used to drain CSF from the cranial vault because of a wide range of pathologies and, like any piece of hardware, can fail. Traditionally investigations include SSR and CT. This project examines the role of SSR in evaluating children with suspected VP shunt failure.Primary outcome: Sensitivity and specificity of SSR in children presenting to the CED with concern for shunt failure.Methods/DesignConducted in a single centre, tertiary CED of the national Irish Neurosurgical(NS) referral centre (ED attendance:>50,000 patients/year). 100 sequential SSR requested by the CED were reviewed. Clinical information was extracted from electronic requests. Shunt failure was defined by the need for NS intervention(Revision).Abstract 332 Figure 1Abstract 332 Figure 2Results/ConclusionsSensitivity and specificity is presented in figure 1 (two by two table).100 radiographs performed in 84 children.22% shunts revised (see flow diagram).7 SSR’s were abnormal.85% (n=6) shunts revised. [5 following abnormal CT].Of the normal SSR’s; 16 had abnormal CT and revised.85/100 received CT.64 of 85 CT’s (75%) were normal.□6 of the 64 had focal shunt concern.SSR’s shouldn’t be used in isolation. NPV&PPV, Sensitivity&Specificity is low.SSR’s are beneficial where there’s concern over focal shunt problems (injury/pain/swelling) or following abnormal CT.VP shunt failure is not well investigated with SSR alone.SSR’s could be omitted where there is no focal shunt concern/after normal CT (without impacting clinical outcome) reducing radiation exposure and reduce impact on CED’s.59 SSR’s could have been avoided without adverse clinical outcome.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Thao Thi Thanh Nguyen ◽  
Masato Shingyoji ◽  
Michiko Hanazono ◽  
Boya Zhong ◽  
Takao Morinaga ◽  
...  

AbstractA majority of mesothelioma specimens were defective of p14 and p16 expression due to deletion of the INK4A/ARF region, and the p53 pathway was consequently inactivated by elevated MDM2 functions which facilitated p53 degradaton. We investigated a role of p53 elevation by MDM2 inhibitors, nutlin-3a and RG7112, in cytotoxicity of replication-competent adenoviruses (Ad) lacking the p53-binding E1B55kDa gene (Ad-delE1B). We found that a growth inhibition by p53-activating Ad-delE1B was irrelevant to p53 expression in the infected cells, but combination of Ad-delE1B and the MDM2 inhibitor produced synergistic inhibitory effects on mesothelioma with the wild-type but not mutated p53 genotype. The combination augmented p53 phosphorylation, activated apoptotic but not autophagic pathway, and enhanced DNA damage signals through ATM-Chk2 phosphorylation. The MDM2 inhibitors facilitated production of the Ad progenies through augmented expression of nuclear factor I (NFI), one of the transcriptional factors involved in Ad replications. Knocking down of p53 with siRNA did not increase the progeny production or the NFI expression. We also demonstrated anti-tumor effects by the combination of Ad-delE1B and the MDM2 inhibitors in an orthotopic animal model. These data collectively indicated that upregulation of wild-type p53 expression contributed to cytotoxicity by E1B55kDa-defective replicative Ad through NFI induction and suggested that replication-competent Ad together with augmented p53 levels was a therapeutic strategy for p53 wild-type mesothelioma.


Sign in / Sign up

Export Citation Format

Share Document