scholarly journals Expanding the repertoire of glucocorticoid receptor target genes by engineering genomic response elements

2018 ◽  
Author(s):  
Verena Thormann ◽  
Laura V. Glaser ◽  
Maika C. Rothkegel ◽  
Marina Borschiwer ◽  
Melissa Bothe ◽  
...  

The glucocorticoid receptor (GR), a hormone-activated transcription factor, binds to a myriad of genomic binding sites yet seems to regulate a much smaller number of genes. Genome-wide analysis of GR binding and gene regulation has shown that the likelihood of GR-dependent regulation increases with decreased distance of its binding to the transcriptional start site of a gene. To test if we can adopt this knowledge to expand the repertoire of GR target genes, we used homology directed repair (HDR)-mediated genome editing to add a single GR binding site directly upstream of the transcriptional start site of four genes. To our surprise, we found that the addition of a single GR binding site can be enough to convert a gene into a GR target. The gain of GR-dependent regulation was observed for two out of four genes analyzed and coincided with acquired GR binding at the introduced binding site. However, the gene-specific gain of GR-dependent regulation could not be explained by obvious differences in chromatin accessibility between converted genes and their non-converted counterparts. Further, by introducing GR binding sequences with different nucleotide compositions, we show that activation can be facilitated by distinct sequences without obvious differences in activity between the GR binding sequence variants we tested. The approach to use genome engineering to build genomic response elements facilitates the generation of cell lines with tailored repertoires of GR-responsive genes and a framework to test and refine our understanding of the cis-regulatory logic of gene regulation by testing if engineered response elements behave as predicted.

2019 ◽  
Vol 2 (2) ◽  
pp. e201800283 ◽  
Author(s):  
Verena Thormann ◽  
Laura V Glaser ◽  
Maika C Rothkegel ◽  
Marina Borschiwer ◽  
Melissa Bothe ◽  
...  

The glucocorticoid receptor (GR), a hormone-activated transcription factor, binds to a myriad of genomic binding sites yet seems to regulate a much smaller number of genes. Genome-wide analysis of GR binding and gene regulation has shown that the likelihood of GR-dependent regulation increases with decreased distance of its binding to the transcriptional start site of a gene. To test if we can adopt this knowledge to expand the repertoire of GR target genes, we used CRISPR/Cas-mediated homology-directed repair to add a single GR-binding site directly upstream of the transcriptional start site of each of four genes. To our surprise, we found that the addition of a single GR-binding site can be enough to convert a gene into a GR target. The gain of GR-dependent regulation was observed for two of four genes analyzed and coincided with acquired GR binding at the introduced binding site. However, the gene-specific gain of GR-dependent regulation could not be explained by obvious differences in chromatin accessibility between converted genes and their non-converted counterparts. Furthermore, by introducing GR-binding sequences with different nucleotide compositions, we show that activation can be facilitated by distinct sequences without obvious differences in activity between the GR-binding sequence variants we tested. The approach to use genome engineering to build genomic response elements facilitates the generation of cell lines with tailored repertoires of GR-responsive genes and a framework to test and refine our understanding of the cis-regulatory logic of gene regulation by testing if engineered response elements behave as predicted.


2005 ◽  
Vol 187 (9) ◽  
pp. 3062-3070 ◽  
Author(s):  
Calin B. Chiribau ◽  
Cristinel Sandu ◽  
Gabor L. Igloi ◽  
Roderich Brandsch

ABSTRACT Nicotine catabolism by Arthrobacter nicotinovorans is linked to the presence of the megaplasmid pAO1. Genes involved in this catabolic pathway are arranged on the plasmid into gene modules according to function. During nicotine degradation γ-N-methylaminobutyrate is formed from the pyrrolidine ring of nicotine. Analysis of the pAO1 open reading frames (ORF) resulted in identification of the gene encoding a demethylating γ-N-methylaminobutyrate oxidase (mabO). This gene was shown to form an operon with purU- and folD-like genes. Only in bacteria grown in the presence of nicotine could transcripts of the purU-mabO-folD operon be detected, demonstrating that this operon constitutes part of the pAO1 nicotine regulon. Its transcriptional start site was determined by primer extension analysis. Transcription of the operon was shown to be controlled by a new transcriptional regulator, PmfR, the product of a gene that is transcribed divergently from the purU, mabO, and folD genes. PmfR was purified, and electromobility shift assays and DNase I-nuclease digestion experiments were used to determine that its DNA binding site is located between −48 and −88 nucleotides upstream of the transcriptional start site of the operon. Disruption of pmfR by homologous recombination with a chloramphenicol resistance cassette demonstrated that PmfR acts in vivo as a transcriptional activator. Mutagenesis of the PmfR target DNA suggested that the sequence GTTT-14 bp-AAAC is the core binding site of the regulator upstream of the −35 promoter region of the purU-mabO-folD operon.


2006 ◽  
Vol 188 (8) ◽  
pp. 3134-3137 ◽  
Author(s):  
Lynn F. Wood ◽  
Dennis E. Ohman

ABSTRACT Expression of mucD, encoding a homologue of the HtrA(DegP) family of endoserine proteases, was investigated in Pseudomonas aeruginosa. Expressed from the algT-mucABCD operon, MucD was detected in mucoid (FRD1) and nonmucoid (PAO1) parental strains and also when polar insertions were placed upstream in algT or mucB. A transcriptional start site for a mucD promoter (PmucD) was mapped within mucC. Expression of single-copy mucD217, encoding MucD altered in the protease motif (S217A), was defective in temperature resistance and alginate gene regulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Fumiko Taniuchi ◽  
Koji Higai ◽  
Tomomi Tanaka ◽  
Yutaro Azuma ◽  
Kojiro Matsumoto

Theα1,2-fucosyltransferase I (FUT1) enzyme is important for the biosynthesis of H antigens, Lewis B, and Lewis Y. In this study, we clarified the transcriptional regulation of FUT1 in the DLD-1 colon cancer cell line, which has high expression of Lewis B and Lewis Y antigens, expresses theFUT1gene, and showsα1,2-fucosyltransferase (FUT) activity. 5′-rapid amplification of cDNA ends revealed a FUT1 transcriptional start site −10 nucleotides upstream of the site registered at NM_000148 in the DataBase of Human Transcription Start Sites (DBTSS). Using the dual luciferase assay,FUT1gene expression was shown to be regulated at the region −91 to −81 nt to the transcriptional start site, which contains the Elk-1 binding site. Site-directed mutagenesis of this region revealed the Elk-1 binding site to be essential for FUT1 transcription. Furthermore, transfection of the dominant negative Elk-1 gene, and the chromatin immunoprecipitation (CHIp) assay, supported Elk-1-dependent transcriptional regulation ofFUT1gene expression in DLD-1 cells. These results suggest that a defined region in the 5′-flanking region of FUT1 is critical for FUT1 transcription and that constitutive gene expression ofFUT1is regulated by Elk-1 in DLD-1 cells.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaowen Fei ◽  
Mats Eriksson ◽  
Yajun Li ◽  
Xiaodong Deng

We have reported three Fe-deficiency-responsive elements (FEREs),FOX1, ATX1,andFEA1, all of which are positive regulatory elements in response to iron deficiency inChlamydomonas reinhardtii. Here we describeFTR1, another iron regulated gene and mutational analysis of its promoter. Our results reveal that the FeREs ofFTR1distinguish itself from other iron response elements by containing bothnegativeandpositiveregulatory regions. InFTR1, the−291/−236 region from the transcriptional start site is necessary and sufficient for Fe-deficiency-inducible expression. This region contains two positive FeREs with a TGGCA-like core sequence: the FtrFeRE1 (ATGCAGGCT) at−287/−279 and the FtrFeRE2 (AAGCGATTGCCAGAGCGC) at−253/−236. Furthermore, we identified a novel FERE, FtrFeRE3 (AGTAACTGTTAAGCC) localized at−319/−292, which negatively influences the expression ofFTR1.


2004 ◽  
Vol 32 (15) ◽  
pp. 4512-4523 ◽  
Author(s):  
Y. V. Sun ◽  
D. R. Boverhof ◽  
L. D. Burgoon ◽  
M. R. Fielden ◽  
T. R. Zacharewski

Abstract Comparative approaches were used to identify human, mouse and rat dioxin response elements (DREs) in genomic sequences unambiguously assigned to a nucleotide RefSeq accession number. A total of 13 bona fide DREs, all including the substitution intolerant core sequence (GCGTG) and adjacent variable sequences, were used to establish a position weight matrix and a matrix similarity (MS) score threshold to rank identified DREs. DREs with MS scores above the threshold were disproportionately distributed in close proximity to the transcription start site in all three species. Gene expression assays in hepatic mouse tissue confirmed the responsiveness of 192 genes possessing a putative DRE. Previously identified functional DREs in well-characterized AhR-regulated genes including Cyp1a1 and Cyp1b1 were corroborated. Putative DREs were identified in 48 out of 2437 human–mouse–rat orthologous genes between −1500 and the transcriptional start site, of which 19 of these genes possessed positionally conserved DREs as determined by multiple sequence alignment. Seven of these nineteen genes exhibited 2,3,7,8-tetrachlorodibenzo- p -dioxin-mediated regulation, although there were significant discrepancies between in vivo and in vitro results. Interestingly, of the mouse–rat orthologous genes with a DRE between −1500 and +1500, only 37% had an equivalent human ortholog. These results suggest that AhR-mediated gene expression may not be well conserved across species, which could have significant implications in human risk assessment.


1994 ◽  
Vol 14 (7) ◽  
pp. 4408-4418 ◽  
Author(s):  
K S Moulton ◽  
K Semple ◽  
H Wu ◽  
C K Glass

The type I and II scavenger receptors (SRs) are highly restricted to cells of monocyte origin and become maximally expressed during the process of monocyte-to-macrophage differentiation. In this report, we present evidence that SR genomic sequences from -245 to +46 bp relative to the major transcriptional start site were sufficient to confer preferential expression of a reporter gene to cells of monocyte and macrophage origin. This profile of expression resulted from the combinatorial actions of multiple positive and negative regulatory elements. Positive transcriptional control was primarily determined by two elements, located 181 and 46 bp upstream of the major transcriptional start site. Transcriptional control via the -181 element was mediated by PU.1/Spi-1, a macrophage and B-cell-specific transcription factor that is a member of the ets domain gene family. Intriguingly, the -181 element represented a relatively low-affinity binding site for Spi-B, a closely related member of the ets domain family that has been shown to bind with relatively high affinity to other PU.1/Spi-1 binding sites. These observations support the idea that PU.1/Spi-1 and Spi-B regulate overlapping but nonidentical sets of genes. The -46 element represented a composite binding site for a distinct set of ets domain proteins that were preferentially expressed in monocyte and macrophage cell lines and that formed ternary complexes with members of the AP-1 gene family. In concert, these observations suggest a model for how interactions between cell-specific and more generally expressed transcription factors function to dictate the appropriate temporal and cell-specific patterns of SR expression during the process of macrophage differentiation.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefanie Schöne ◽  
Marcel Jurk ◽  
Mahdi Bagherpoor Helabad ◽  
Iris Dror ◽  
Isabelle Lebars ◽  
...  

Abstract The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes.


2013 ◽  
Vol 32 (11) ◽  
pp. 1568-1583 ◽  
Author(s):  
Lars Grøntved ◽  
Sam John ◽  
Songjoon Baek ◽  
Ying Liu ◽  
John R Buckley ◽  
...  

1994 ◽  
Vol 14 (7) ◽  
pp. 4408-4418
Author(s):  
K S Moulton ◽  
K Semple ◽  
H Wu ◽  
C K Glass

The type I and II scavenger receptors (SRs) are highly restricted to cells of monocyte origin and become maximally expressed during the process of monocyte-to-macrophage differentiation. In this report, we present evidence that SR genomic sequences from -245 to +46 bp relative to the major transcriptional start site were sufficient to confer preferential expression of a reporter gene to cells of monocyte and macrophage origin. This profile of expression resulted from the combinatorial actions of multiple positive and negative regulatory elements. Positive transcriptional control was primarily determined by two elements, located 181 and 46 bp upstream of the major transcriptional start site. Transcriptional control via the -181 element was mediated by PU.1/Spi-1, a macrophage and B-cell-specific transcription factor that is a member of the ets domain gene family. Intriguingly, the -181 element represented a relatively low-affinity binding site for Spi-B, a closely related member of the ets domain family that has been shown to bind with relatively high affinity to other PU.1/Spi-1 binding sites. These observations support the idea that PU.1/Spi-1 and Spi-B regulate overlapping but nonidentical sets of genes. The -46 element represented a composite binding site for a distinct set of ets domain proteins that were preferentially expressed in monocyte and macrophage cell lines and that formed ternary complexes with members of the AP-1 gene family. In concert, these observations suggest a model for how interactions between cell-specific and more generally expressed transcription factors function to dictate the appropriate temporal and cell-specific patterns of SR expression during the process of macrophage differentiation.


Sign in / Sign up

Export Citation Format

Share Document