scholarly journals Perineuronal Nets in the Insula Regulate Aversion-Resistant Alcohol Drinking

2018 ◽  
Author(s):  
Hu Chen ◽  
Amy W Lasek

One of the most pernicious characteristics of alcohol use disorder is the compulsion to drink despite negative consequences. The insular cortex (insula) controls decision-making under conditions of risk or conflict and regulates maladaptive behaviors in the context of addiction. Cortical activity is tightly controlled by fast-spiking inhibitory interneurons that are often enclosed by specialized extracellular matrix structures known as perineuronal nets, which regulate neuronal excitability and plasticity. Using a mouse model of compulsive drinking in which alcohol was adulterated with the bitter tastant quinine, we demonstrate that disrupting perineuronal nets in the insula rendered mice more sensitive to quinine-adulterated alcohol. Activation of the insula, as measured by c-fos expression, occurred during aversion-resistant drinking and was further enhanced by elimination of perineuronal nets. These results provide fundamental insight into neuroanatomical and cellular mechanisms that control compulsive drinking.

Author(s):  
Daniel Elieh Ali Komi ◽  
Wolfgang M. Kuebler

AbstractMast cells (MCs) are critically involved in microbial defense by releasing antimicrobial peptides (such as cathelicidin LL-37 and defensins) and phagocytosis of microbes. In past years, it has become evident that in addition MCs may eliminate invading pathogens by ejection of web-like structures of DNA strands embedded with proteins known together as extracellular traps (ETs). Upon stimulation of resting MCs with various microorganisms, their products (including superantigens and toxins), or synthetic chemicals, MCs become activated and enter into a multistage process that includes disintegration of the nuclear membrane, release of chromatin into the cytoplasm, adhesion of cytoplasmic granules on the emerging DNA web, and ejection of the complex into the extracellular space. This so-called ETosis is often associated with cell death of the producing MC, and the type of stimulus potentially determines the ratio of surviving vs. killed MCs. Comparison of different microorganisms with specific elimination characteristics such as S pyogenes (eliminated by MCs only through extracellular mechanisms), S aureus (removed by phagocytosis), fungi, and parasites has revealed important aspects of MC extracellular trap (MCET) biology. Molecular studies identified that the formation of MCET depends on NADPH oxidase-generated reactive oxygen species (ROS). In this review, we summarize the present state-of-the-art on the biological relevance of MCETosis, and its underlying molecular and cellular mechanisms. We also provide an overview over the techniques used to study the structure and function of MCETs, including electron microscopy and fluorescence microscopy using specific monoclonal antibodies (mAbs) to detect MCET-associated proteins such as tryptase and histones, and cell-impermeant DNA dyes for labeling of extracellular DNA. Comparing the type and biofunction of further MCET decorating proteins with ETs produced by other immune cells may help provide a better insight into MCET biology in the pathogenesis of autoimmune and inflammatory disorders as well as microbial defense.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Li ◽  
Yang Li ◽  
Peng Li ◽  
Bin Fang ◽  
Xu Yang ◽  
...  

AbstractNonmagnetic Rashba systems with broken inversion symmetry are expected to exhibit nonreciprocal charge transport, a new paradigm of unidirectional magnetoresistance in the absence of ferromagnetic layer. So far, most work on nonreciprocal transport has been solely limited to cryogenic temperatures, which is a major obstacle for exploiting the room-temperature two-terminal devices based on such a nonreciprocal response. Here, we report a nonreciprocal charge transport behavior up to room temperature in semiconductor α-GeTe with coexisting the surface and bulk Rashba states. The combination of the band structure measurements and theoretical calculations strongly suggest that the nonreciprocal response is ascribed to the giant bulk Rashba spin splitting rather than the surface Rashba states. Remarkably, we find that the magnitude of the nonreciprocal response shows an unexpected non-monotonical dependence on temperature. The extended theoretical model based on the second-order spin–orbit coupled magnetotransport enables us to establish the correlation between the nonlinear magnetoresistance and the spin textures in the Rashba system. Our findings offer significant fundamental insight into the physics underlying the nonreciprocity and may pave a route for future rectification devices.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mehrshad Golesorkhi ◽  
Javier Gomez-Pilar ◽  
Shankar Tumati ◽  
Maia Fraser ◽  
Georg Northoff

AbstractThe human cortex exhibits intrinsic neural timescales that shape a temporal hierarchy. Whether this temporal hierarchy follows the spatial hierarchy of its topography, namely the core-periphery organization, remains an open issue. Using magnetoencephalography data, we investigate intrinsic neural timescales during rest and task states; we measure the autocorrelation window in short (ACW-50) and, introducing a novel variant, long (ACW-0) windows. We demonstrate longer ACW-50 and ACW-0 in networks located at the core compared to those at the periphery with rest and task states showing a high ACW correlation. Calculating rest-task differences, i.e., subtracting the shared core-periphery organization, reveals task-specific ACW changes in distinct networks. Finally, employing kernel density estimation, machine learning, and simulation, we demonstrate that ACW-0 exhibits better prediction in classifying a region’s time window as core or periphery. Overall, our findings provide fundamental insight into how the human cortex’s temporal hierarchy converges with its spatial core-periphery hierarchy.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Bhanu P. Tewari ◽  
Lata Chaunsali ◽  
Susan L. Campbell ◽  
Dipan C. Patel ◽  
Adam E. Goode ◽  
...  

2015 ◽  
Vol 21 (5) ◽  
pp. 614-626 ◽  
Author(s):  
Woojin Yoon ◽  
Diane Y. Lee ◽  
Jaeyong Song

AbstractThis paper investigates the effects on knowledge creation of network size and partner diversity formed through alliance relationships. These effects are tested empirically in the biotech industry setting, which is representative of industries that emphasize external collaboration. Using patent count as a proxy of knowledge creation, Poisson regression was employed to test our predictions empirically. The statistical results show an inverted U-shaped relationship between network size and knowledge creation. In addition, a negative relationship was observed between partner diversity and knowledge creation. This research suggests that small biotech firms should strive to achieve a balanced network size. Knowledge creation is better promoted in these firms through alliances with firms of similar organizational type. The value of this research lies in the fact that it provides new insight into properties of alliance networks by highlighting potentially negative consequences of having an oversized alliance network and partner diversity.


2021 ◽  
Vol 11 ◽  
Author(s):  
Marek Wypych ◽  
Marc N. Potenza

Self-regulation (SR) is an important human function that relates to quality of life in multiple domains including mental health. Previous studies have found important correlates of low SR including impulsivity and poor emotional regulation; however, underpinnings of low SR are incompletely understood. Individuals low in SR frequently engage in maladaptive behaviors (substance abuse, procrastination, etc.) despite negative consequences. This phenomenon suggests that impaired learning from errors and punishments may be important mechanisms underlying low SR. Consistently, previous studies observed impaired error processing in a wide spectrum of individuals with low SR and impaired learning from errors and punishments in SR-related disorders. We also note a possible role for poor emotional regulation and refer to concepts suggesting that engaging in maladaptive behaviors may serve as short term emotion regulation strategies aimed at avoiding or alleviating negative affect. We speculate on transdiagnostic factors underlying poor SR. We propose that impaired error processing (possibly related to striatal functioning) may prevent subjects with low SR from learning from errors and punishments and thus learning better SR skills or tendencies. Additionally, impaired coping in emotionally challenging situations, possibly related to prefrontal-cortical functioning, may lead to maladaptive avoidance. Moreover, maladaptive behaviors may be reinforced by the temporary decreases in negative affect and rewarding values of behaviors. Given existing knowledge gaps, we call for more extensive research and describe possible directions and challenges for future studies.


Author(s):  
Allyson J. Bennett ◽  
William D. Hopkins ◽  
Ruth Feldman ◽  
Valeria Gazzola ◽  
Jay Giedd ◽  
...  

Neuroscience offers insight into processes that support the development of the social brain within the cultural contexts that permit attachment relationships to form. Both human and nonhuman animal studies are critical to inform theory development and hypothesis testing via descriptive and experimental studies. A scientifically valid evolutionary theory is necessary to account for the remarkable diversity of parenting systems across human and many nonhuman animals. This chapter examines the neural foundations of attachment and poses critical questions that relate to the initiation of this relationship: How does attachment interface with brain development? What is the interplay between attachment and brain development (including elements of bidirectionality)? Are there negative consequences associated with variation in attachment, and are they reversible? Rather than conceptualizing attachment in terms of a single type of relationship, or a rigid developmental channel, this chapter proposes that an expanded consideration of variation is necessary to understand the neural foundations of infant-caregiver relationships, and the role of those relationships in developing competence across the life span. This approach will permit identification of common neurobiological elements of attachment as well as the remarkable plasticity and diversity within and across individuals, cultures, and species.


Sign in / Sign up

Export Citation Format

Share Document