scholarly journals Complement C3- and CR3-dependent microglial clearance protects photoreceptors in retinitis pigmentosa

2018 ◽  
Author(s):  
Sean M. Silverman ◽  
Wenxin Ma ◽  
Xu Wang ◽  
Lian Zhao ◽  
Wai T. Wong

AbstractComplement activation has been implicated as an inflammatory driver of neurodegeneration in retinal and brain pathologies. However, its involvement and influence of photoreceptor degeneration in retinitis pigmentosa (RP), an inherited, largely incurable blinding disease, is unclear. We discover that markedly upregulated retinal expression of multiple complement components coincided spatiotemporally with photoreceptor degeneration in both the rd10 mouse model and in human specimens of RP, with increased complement C3 expression and activation localizing to infiltrating microglia near photoreceptors. Genetic ablation of C3 in the rd10 background resulted in accelerated structural and functional photoreceptor degeneration and altered retinal expression of inflammatory genes. These effects were phenocopied by the genetic deletion of CR3, a microglia-expressed receptor for the C3 activation product C3b, implicating an adaptive microglial-mediation mechanism involving C3-CR3 interaction. Deficiency of either C3 or CR3 resulted in deficient microglial phagocytosis of apoptotic photoreceptors in vivo, as well as increased microglial neurotoxicity to photoreceptors in vitro. These findings demonstrate a novel adaptive role for complement activation in RP that facilitates microglial clearance of apoptotic photoreceptors, without which increased proinflammatory microglial neurotoxicity ensues. These positive contributions of complement via microglial-mediated mechanisms are important in the design of immunomodulatory therapeutic approaches to neurodegeneration.One Sentence SummaryComplement activation mediates adaptive neuroprotection for photoreceptors by facilitating C3-CR3 dependent microglial clearance of apoptotic cells.

2019 ◽  
Vol 216 (8) ◽  
pp. 1925-1943 ◽  
Author(s):  
Sean M. Silverman ◽  
Wenxin Ma ◽  
Xu Wang ◽  
Lian Zhao ◽  
Wai T. Wong

Complement activation has been implicated as contributing to neurodegeneration in retinal and brain pathologies, but its role in retinitis pigmentosa (RP), an inherited and largely incurable photoreceptor degenerative disease, is unclear. We found that multiple complement components were markedly up-regulated in retinas with human RP and the rd10 mouse model, coinciding spatiotemporally with photoreceptor degeneration, with increased C3 expression and activation localizing to activated retinal microglia. Genetic ablation of C3 accelerated structural and functional photoreceptor degeneration and altered retinal inflammatory gene expression. These phenotypes were recapitulated by genetic deletion of CR3, a microglia-expressed receptor for the C3 activation product iC3b, implicating C3-CR3 signaling as a regulator of microglia–photoreceptor interactions. Deficiency of C3 or CR3 decreased microglial phagocytosis of apoptotic photoreceptors and increased microglial neurotoxicity to photoreceptors, demonstrating a novel adaptive role for complement-mediated microglial clearance of apoptotic photoreceptors in RP. These homeostatic neuroinflammatory mechanisms are relevant to the design and interpretation of immunomodulatory therapeutic approaches to retinal degenerative disease.


1971 ◽  
Vol 134 (1) ◽  
pp. 176-187 ◽  
Author(s):  
Michael M. Frank ◽  
Joseph May ◽  
Thelma Gaither ◽  
Leonard Ellman

In vitro studies were performed utilizing sera from a strain of guinea pigs with a total absence of hemolytically active C4. Previous studies in these animals have demonstrated normal complement-dependent inflammatory reactions, suggesting that they are able to bypass their deficiency of C4. In vitro studies with C4-deficient serum also indicate normal activation of late-acting C components. Thus, endotoxin was capable of fixing normal amounts of the late components of complement (C3-9) in these sera, but did not fix C1 and C2. Antigen-antibody complexes fixed both early and late components of complement, although components beyond C4 were fixed less efficiently than in normal sera. Therefore, both in vivo and in vitro evidence indicates that the C4-deficient guinea pigs possess an alternate pathway for activation of late-acting complement components. Antigenic analysis of C4-deficient serum utilizing both guinea pig anti-C4 antibody and rabbit anti-C4 antibody suggests an absolute deficiency of C4-like molecules. Sera from animals with C4-deficiency were found to have one-half the normal level of C2. Sera from five of eight animals tested had 10–20% normal C1 activity. C3-9 assayed as a complex was normal.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-30
Author(s):  
Paula M Jacobi ◽  
Sarah E Sartain

Introduction Thrombotic microangiopathy (TMA) is a group of disorders presenting with microvascular thrombosis, microangiopathic hemolytic anemia, thrombocytopenia, and microvascular endothelial injury ultimately leading to end organ damage. Atypical hemolytic uremic syndrome (aHUS) and bone marrow transplantation-associated TMA (TA-TMA) are two types of TMA known as "complement TMA," as they are associated with dysfunction of the alternative complement pathway (AP), part of the innate immune system. Complement TMA episodes are frequently initiated during inflammation, and the role of inflammation in these TMAs may be in part related to the finding that the inflammatory cytokine TNF up-regulates complement components, down-regulates complement regulators, and causes AP activation in human glomerular microvascular endothelial cells (GMVECs) in vitro. However, the precise mechanism of AP activation in complement TMA is poorly understood. It has been demonstrated that von Willebrand factor (VWF) serves as a surface for AP activation in vitro. Inflammatory cytokines are stimulatory to endothelial cells, leading to excessive VWF secretion; in fact, patients with inflammatory disorders such as complement TMA demonstrate elevated plasma VWF levels, and this abundance of VWF may lead to excessive AP activation. We hypothesized that in complement TMA, VWF released from endothelial cells during inflammation activates the AP. The objective was to investigate whether VWF-mediated AP activation is initiating episodes of complement TMA in vivo in a complement TMA mouse model. Methods A mouse model of complement TMA was developed. To provoke complement TMA, wild-type (WT) C57BL/6J mice (purchased from Jackson Laboratories) were injected intraperitoneally with 5 mg/kg of the inflammatory endotoxin lipopolysaccharide (LPS). Twenty-four hours after injection of either LPS or saline (control), markers of complement TMA-lactate dehydrogenase (LDH), creatinine, platelet count, and complement activation by a rabbit erythrocyte (ER) lysis assay-were measured. ER specifically activate the AP in mammalian plasma in the presence of Mg/EGTA, and the resulting lysis is an indicator of the extent to which complement components have been consumed in vivo: low ER lysis in vitro indicates high complement activation in vivo. To assess the role of VWF in AP activation in vivo, VWF-/- mice (purchased from Jackson Laboratories on a C57BL/6J background) were injected with 5 mg/kg LPS to induce complement TMA. Twenty-four hours after injection, plasma ER lysis was measured and compared to ER lysis in LPS-injected WT C57BL/6J mice. Other markers of complement TMA, including LDH, creatinine, and platelet count, were also measured in both LPS-injected VWF-/- and WT C57BL/6J mice. Results Compared to saline-injected WT C57BL/6J mice, the LPS-injected mice demonstrated significantly: A) higher LDH (hemolysis); B) higher creatinine (renal dysfunction); C) lower platelet count; and D) lower ER lysis (increased AP activation) (Fig. 1). These results confirm the establishment of a complement TMA murine model. Furthermore, LPS-injected VWF-/- mice demonstrated significantly higher ER lysis values than the LPS-injected WT C57BL/6J mice, indicating less AP activation (Fig 2). Because VWF-/- mice do not produce any VWF, these data suggest that VWF contributes to AP activation in vivo in complement TMA. Finally, the LPS-injected VWF-/- mice had less severe TMA as demonstrated by lower LDH levels, lower creatinine levels, and higher platelet counts compared to the LPS-injected WT C57BL/6J mice (Fig. 3). The LPS-injected VWF-/- mice still had a mild degree of AP activation and TMA compared to saline-injected WT C57BL/6J mice, implying that there are complex mechanisms of AP activation in complement TMA that rely heavily on VWF. Conclusions In this study we demonstrated that VWF was important in complement activation and provocation of TMA in a complement TMA murine model. These data are the first step toward a better understanding of VWF's role in complement TMA and may lead to the development of therapeutics that inhibit inflammation, VWF release, or VWF-complement binding to curb AP activation in aHUS and TA-TMA, thereby preventing devastating outcomes. Further study is necessary to delineate the precise mechanisms of VWF-mediated AP activation and TMA development so that these treatment modalities may be explored. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1980 ◽  
Vol 56 (3) ◽  
pp. 409-416 ◽  
Author(s):  
WF Rosse ◽  
JP Adams

Abstract The amount of lysis effected by cold agglutinins is directly related to the ability of the antibody to initiate complement activation. This ability is modified by the concentration of antibody, its thermal amplitude (the highest temperature at which the antibody will react with the cell), the degree to which antibody fixation is modified by the presence of complement components (particularly C3) on the membrane, and the degree to which antibody, once fixed, is able to fix the components of complement. In vitro measurement of these factors correlates with the rate of hemolysis in vivo.


Blood ◽  
1980 ◽  
Vol 56 (3) ◽  
pp. 409-416 ◽  
Author(s):  
WF Rosse ◽  
JP Adams

The amount of lysis effected by cold agglutinins is directly related to the ability of the antibody to initiate complement activation. This ability is modified by the concentration of antibody, its thermal amplitude (the highest temperature at which the antibody will react with the cell), the degree to which antibody fixation is modified by the presence of complement components (particularly C3) on the membrane, and the degree to which antibody, once fixed, is able to fix the components of complement. In vitro measurement of these factors correlates with the rate of hemolysis in vivo.


2021 ◽  
Vol 12 (2) ◽  
pp. 30
Author(s):  
Shabir Hassan ◽  
Berivan Cecen ◽  
Ramon Peña-Garcia ◽  
Fernanda Roberta Marciano ◽  
Amir K. Miri ◽  
...  

Different strategies have been employed to provide adequate nutrients for engineered living tissues. These have mainly revolved around providing oxygen to alleviate the effects of chronic hypoxia or anoxia that result in necrosis or weak neovascularization, leading to failure of artificial tissue implants and hence poor clinical outcome. While different biomaterials have been used as oxygen generators for in vitro as well as in vivo applications, certain problems have hampered their wide application. Among these are the generation and the rate at which oxygen is produced together with the production of the reaction intermediates in the form of reactive oxygen species (ROS). Both these factors can be detrimental for cell survival and can severely affect the outcome of such studies. Here we present calcium peroxide (CPO) encapsulated in polycaprolactone as oxygen releasing microparticles (OMPs). While CPO releases oxygen upon hydrolysis, PCL encapsulation ensures that hydrolysis takes place slowly, thereby sustaining prolonged release of oxygen without the stress the bulk release can endow on the encapsulated cells. We used gelatin methacryloyl (GelMA) hydrogels containing these OMPs to stimulate survival and proliferation of encapsulated skeletal myoblasts and optimized the OMP concentration for sustained oxygen delivery over more than a week. The oxygen releasing and delivery platform described in this study opens up opportunities for cell-based therapeutic approaches to treat diseases resulting from ischemic conditions and enhance survival of implants under severe hypoxic conditions for successful clinical translation.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Kübra Taban ◽  
David Pauck ◽  
Mara Maue ◽  
Viktoria Marquardt ◽  
Hua Yu ◽  
...  

Abstract Medulloblastoma (MB) is the most common malignant brain tumor in children and is frequently metastatic at diagnosis. Treatment with surgery, radiation and multi-agent chemotherapy may leave survivors of these brain tumors with long-term deficits as a consequence. One of the four consensus molecular subgroups of MB is the MYC-driven group 3 MB, which is the most malignant type and has a poor prognosis under current therapy. Thus, it is important to discover more effective targeted therapeutic approaches. We conducted a high-throughput drug screening to identify novel compounds showing efficiency in group 3 MB using both clinically established inhibitors (n=196) and clinically-applicable compounds (n=464). More than 20 compounds demonstrated a significantly higher anti-tumoral effect in MYChigh (n=7) compared to MYClow (n=4) MB cell models. Among these compounds, Navitoclax and Clofarabine showed the strongest effect in inducing cell cycle arrest and apoptosis in MYChigh MB models. Furthermore, we show that Navitoclax, an orally bioavailable and blood-brain barrier passing anti-cancer drug, inhibits specifically Bcl-xL proteins. In line, we found a significant correlation between BCL-xL and MYC mRNA levels in 763 primary MB patient samples (Data source: “R2 https://hgserver1.amc.nl”). In addition, Navitoclax and Clofarabine have been tested in cells obtained from MB patient-derived-xenografts, which confirmed their specific efficacy in MYChigh versus MYClow MB. In summary, our approach has identified promising new drugs that significantly reduce cell viability in MYChigh compared to MYClow MB cell models. Our findings point to novel therapeutic vulnerabilities for MB that need to be further validated in vitro and in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Garrett M. Fogo ◽  
Anthony R. Anzell ◽  
Kathleen J. Maheras ◽  
Sarita Raghunayakula ◽  
Joseph M. Wider ◽  
...  

AbstractThe mitochondrial network continually undergoes events of fission and fusion. Under physiologic conditions, the network is in equilibrium and is characterized by the presence of both elongated and punctate mitochondria. However, this balanced, homeostatic mitochondrial profile can change morphologic distribution in response to various stressors. Therefore, it is imperative to develop a method that robustly measures mitochondrial morphology with high accuracy. Here, we developed a semi-automated image analysis pipeline for the quantitation of mitochondrial morphology for both in vitro and in vivo applications. The image analysis pipeline was generated and validated utilizing images of primary cortical neurons from transgenic mice, allowing genetic ablation of key components of mitochondrial dynamics. This analysis pipeline was further extended to evaluate mitochondrial morphology in vivo through immunolabeling of brain sections as well as serial block-face scanning electron microscopy. These data demonstrate a highly specific and sensitive method that accurately classifies distinct physiological and pathological mitochondrial morphologies. Furthermore, this workflow employs the use of readily available, free open-source software designed for high throughput image processing, segmentation, and analysis that is customizable to various biological models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donita L. Garland ◽  
Eric A. Pierce ◽  
Rosario Fernandez-Godino

AbstractThe complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration. In this study, we have used double mutant Efemp1R345W/R345W:C5-/- mice to investigate the role of C5 in the formation of sub-RPE deposits in vivo and in vitro. The data revealed that the genetic ablation of C5 does not eliminate the formation of sub-RPE deposits. Contrarily, the absence of C5 in RPE cultures promotes complement dysregulation that results in increased activation of C3, which likely contributes to deposit formation even in the absence of EFEMP1-R345W mutant protein. The results also suggest that genetic ablation of C5 alters the extracellular matrix turnover through an effect on matrix metalloproteinases in RPE cell cultures. These results confirm that C3 rather than C5 could be an effective therapeutic target to treat early AMD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Harry O. Orlans ◽  
Michelle E. McClements ◽  
Alun R. Barnard ◽  
Cristina Martinez-Fernandez de la Camara ◽  
Robert E. MacLaren

AbstractRhodopsin (RHO) gene mutations are a common cause of autosomal dominant retinitis pigmentosa (ADRP). The need to suppress toxic protein expression together with mutational heterogeneity pose challenges for treatment development. Mirtrons are atypical RNA interference effectors that are spliced from transcripts as short introns. Here, we develop a novel mirtron-based knockdown/replacement gene therapy for the mutation-independent treatment of RHO-related ADRP, and demonstrate efficacy in a relevant mammalian model. Splicing and potency of rhodopsin-targeting candidate mirtrons are initially determined, and a mirtron-resistant codon-modified version of the rhodopsin coding sequence is validated in vitro. These elements are then combined within a single adeno-associated virus (AAV) and delivered subretinally in a RhoP23H knock-in mouse model of ADRP. This results in significant mouse-to-human rhodopsin RNA replacement and is associated with a slowing of retinal degeneration. This provides proof of principle that synthetic mirtrons delivered by AAV are capable of reducing disease severity in vivo.


Sign in / Sign up

Export Citation Format

Share Document