scholarly journals Splicing inhibition enhances the antitumor immune response through increased tumor antigen presentation and altered MHC-I immunopeptidome

2019 ◽  
Author(s):  
Alison Pierson ◽  
Romain Darrigrand ◽  
Marine Rouillon ◽  
Mathilde Boulpicante ◽  
Zafiarisoa Dolor Renko ◽  
...  

AbstractThe success of cancer immunotherapy relies on the induction of an immunoprotective response targeting tumor antigens (TAs) presented by tumor cells on MHC class I molecules. Alternative translation events emerged as a rich source of TAs and generate the so-called Pioneer Translation Products (PTPs), which are peptides generated from unspliced mRNA. We demonstrated in vitro and in vivo that the splicing inhibitor isoginkgetin and a derived water-soluble and less toxic molecule, IP2, act at the production stage of the PTPs. We showed that IP2 increases PTP-derived antigen presentation in cancer cells in vitro and decreases tumor growth in vivo in an immune-dependent manner. Furthermore, IP2 treatment induces a long-lasting antitumor response. Finally, we observed that the epitope repertoire displayed on MHC-I molecules is altered upon treatment with IP2 with the modulation of pre-existing peptides and the emergence of novel antigens derived from both coding and allegedly non-coding sequences.SignificanceIP2 is a new efficient “first in class” immunomodulator of the MHC I presentation pathway. IP2 reduces the growth of sarcoma MCA205 and melanoma B16F10 tumors bearing the PTP-derived SL8 epitope and significantly extends mice survival. IP2 treatment reshape the cancer cell MHC-I immunopeptidome. These findings add to the understanding of the role of the splicing machinery in antigen production and presentation and identify the spliceosome as a druggable target to enhance cancer immunosurveillance.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Romain Darrigrand ◽  
Alison Pierson ◽  
Marine Rouillon ◽  
Dolor Renko ◽  
Mathilde Boulpicante ◽  
...  

AbstractThe success of cancer immunotherapy relies on the induction of an immunoprotective response targeting tumor antigens (TAs) presented on MHC-I molecules. We demonstrated that the splicing inhibitor isoginkgetin and its water-soluble and non-toxic derivative IP2 act at the production stage of the pioneer translation products (PTPs). We showed that IP2 increases PTP-derived antigen presentation in cancer cells in vitro and impairs tumor growth in vivo. IP2 action is long-lasting and dependent on the CD8+ T cell response against TAs. We observed that the antigen repertoire displayed on MHC-I molecules at the surface of MCA205 fibrosarcoma is modified upon treatment with IP2. In particular, IP2 enhances the presentation of an exon-derived epitope from the tumor suppressor nischarin. The combination of IP2 with a peptide vaccine targeting the nischarin-derived epitope showed a synergistic antitumor effect in vivo. These findings identify the spliceosome as a druggable target for the development of epitope-based immunotherapies.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi6-vi6
Author(s):  
Takashi Fujii ◽  
Shun Yamamuro ◽  
Masamichi Takahashi ◽  
Akihide Kondo ◽  
Yoshitaka Narita ◽  
...  

Abstract The therapeutic outcome of glioblastomas (GBMs) is still very poor. Therefore, invention of novel therapeutic methods against GBM cases is considered urgent. The antitumor effects of naturally-derived compounds are attracting attention recently, and therapeutic efficacy of curcumin, a plant-derived compound previously used for multiple purpose, has been indicated in many cancer systems; however, clinical application of curcumin is considered difficult because of its poor bioavailability (under 1 %). Curcumin monoglucuronide (CMG), a water-soluble prodrug of curcumin recently developed for overcoming this weakness, has been demonstrated excellent antitumor effects for several malignancies in vitro and in vivo; therefore, we investigated the effects of CMG against GBM cells. CMG induced cell death of human GBM cells lines (T98G, U251MG, and U87MG) by dose dependent manner by triggering multiple forms of cell death such as apoptosis and perthanatos. Immunoblotting of CMG-treated GBM cell lysates demonstrated activation of multiple cell death signaling. Furthermore, immunodeficiency mice harboring intracerebral U87MG cell xenografts systemically treated by CMG showed significantly prolonged survival compared with control mice. These results suggest CMG would be a novel therapeutic agent against GBM cases.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4416 ◽  
Author(s):  
Yang Hu ◽  
Qingju Li ◽  
Yunzheng Pan ◽  
Li Xu

Salvianolic acid B is one of the main water-soluble components of Salvia miltiorrhiza Bge. Many reports have shown that it has significant anti-myocardial ischemia effect. However, the underlying mechanism remains unclear. Our present study demonstrated that Sal B could alleviate myocardial ischemic injury by inhibiting the priming phase of NLRP3 inflammasome. In vivo, serum c-troponin I (cTn), lactate dehydrogenase (LDH) levels, the cardiac function and infract size were examined. We found that Sal B could notably reduce the myocardial ischemic injury caused by ligation of the left anterior descending coronary artery. In vitro, Sal B down-regulated the TLR4/NF-κB signaling cascades in lipopolysaccharide (LPS)-stimulated H9C2 cells. Furthermore, Sal B reduced the expression levels of IL-1β and NLRP3 inflammasome in a dose-dependent manner. In short, our study provided evidence that Sal B could attenuate myocardial ischemic injury via inhibition of TLR4/NF-κB/NLRP3 signaling pathway. And in an upstream level, MD-2 may be the potential target.


2005 ◽  
Vol 79 (9) ◽  
pp. 5786-5798 ◽  
Author(s):  
Nupur T. Pande ◽  
Colin Powers ◽  
Kwangseog Ahn ◽  
Klaus Früh

ABSTRACT Human cytomegalovirus (HCMV) is a paradigm for mechanisms subverting antigen presentation by major histocompatibility complex (MHC) molecules. Due to its limited host range, HCMV cannot be studied in animals. Thus, the in vivo importance of inhibiting antigen presentation for the establishment and maintenance of infection with HCMV is unknown. Rhesus cytomegalovirus (RhCMV) is an emerging animal model that shares many of the features of HCMV infection. The recent completion of the genomic sequence of RhCMV revealed a significant degree of homology to HCMV. Strikingly, RhCMV contains several genes with low homology to the HCMV US6 gene family of inhibitors of the MHC I antigen presentation pathway. Here, we examine whether the RhCMV US6 homologues (open reading frames Rh182, -184, -185, -186, -187, and -189) interfere with the MHC I antigen-processing pathway. We demonstrate that Rh182 and Rh189 function similarly to HCMV US2 and US11, respectively, mediating the proteasomal degradation of newly synthesized MHC I. The US3 homologue, Rh184, delayed MHC I maturation. Unlike US3, MHC I molecules eventually escaped retention by Rh184, so that steady-state surface levels of MHC I remained unchanged. Rh185 acted similarly to US6 and inhibited peptide transport by TAP and, consequently, peptide loading of MHC I molecules. Thus, despite relatively low sequence conservation, US6 family-related genes in RhCMV are functionally closely related to the conserved structural features of HCMV immunomodulators. The conservation of these mechanisms implies their importance for immune evasion in vivo, a question that can now be addressed experimentally.


2020 ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background: Modulation of the host immune response by nematode parasites has been widely reported. Rhodaneses (thiosulfate: cyanide sulfurtransferases) are present in a wide range of organisms, such as archaea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homologue could be bound by goat peripheral blood mononuclear cells (PBMCs) in vivo.Methods: In the present study, we cloned and produced a recombinant rhodanese protein originating from Haemonchus contortus (rHCRD), a parasitic nematode of small ruminants. rHCRD was co-incubated with goat PBMCs to assess its immunomodulatory effects on proliferation, apoptosis and cytokine secretion.Results: We verified that the natural HCRD protein localized predominantly to the bowel wall and body surface of the parasite. We further demonstrated that serum produced by goats artificially infected with H. contortus successfully recognized rHCRD, which bound to goat PBMCs. rHCRD suppressed proliferation of goat PBMCs stimulated by concanavalin A but did not induce apoptosis in goat PBMCs. The production of TNF-α and IFN-γ decreased significantly, whereas secretion of IL-10 and TGF-β1 increased, in goat PBMCs after exposure to rHCRD. rHCRD also inhibited phagocytosis by goat monocytes. Moreover, rHCRD downregulated the expression of major histocompatibility complex (MHC)-II on goat monocytes in a dose-dependent manner, but did not alter MHC-I expression.Conclusions: These results propose a possible immunomodulatory target that may help illuminate the interactions between parasites and their hosts at the molecular level and reveal innovative protein species as candidate drug and vaccine targets.


2021 ◽  
Author(s):  
Lei Zhan ◽  
Junhui Zhang ◽  
Jing Zhang ◽  
Xiaojing Liu ◽  
Suding Zhu ◽  
...  

Abstract Background: The major histocompatibility complex class I (MHC- I) transactivator, nucleotide binding oligomerization domain-like receptor family caspase recruitment domain containing 5 (NLRC5), serves as a target for immune evasion in many cancers, including endometrial cancer (EC). An inhibition of autophagy can contribute to immunotherapy by assisting the MHC-I-mediated antigen presentation in cancer. However, the underlying mechanism for autophagy-regulated MHC-I in EC remains unclear. Our study aimed to investigate the effect of autophagy on NLRC5 and MHC-I-mediated antigen presentation, and to identify the potential mechanisms underlying this process in EC.Methods: We examined the levels of autophagy and MHC-I genes by performing transmission electron microscopy (TEM), RNA-seq sequencing, western blotting, and qRT-PCR. The t-test, F-test, Kaplan-Meier analysis, and Pearson’s correlation analysis were used for statistical evaluations of tissue microarrays. Immunofluorescence staining, co-immunoprecipitation (CO-IP), and glutathione S-transferase (GST) pull-down assay were performed. HEC-1A, AN3CA, and Ishikawa EC cells were transfected designed, and the role of LC3 and NLRC5 in MHC-I-mediated antigen presentation in EC was further evaluated in a xenotransplantation model of HEC-1A cell line. Results: Autophagy was upregulated in EC endometrium as compared to that in normal endometrium. MHC I and NLRC5 expressions were lower in EC endometrium than in normal endometrium. Autophagy played a negative role in the MHC-I genes expression in vitro. Furthermore, a negative correlation was found between LC3 and NLRC5 levels, and LC3 interacted with NLRC5 to inhibit NLRC5-mediated MHC-I antigen presentation pathway in vitro and in vivo. Conclusion: An upregulation of LC3 in EC patients may contribute to tumor immune escape by restricting the NLRC5-mediated MHC-I antigen presentation pathway, suggesting that inhibiting LC3 and promoting NLRC5 may be a promising immunotherapy strategy in the management of EC.


2020 ◽  
Vol 6 (22) ◽  
pp. eaba5412
Author(s):  
Yuan Wang ◽  
Xinting Wang ◽  
Xiaoteng Cui ◽  
Yue Zhuo ◽  
Hongshuai Li ◽  
...  

SND1 is highly expressed in various cancers. Here, we identify oncoprotein SND1 as a previously unidentified endoplasmic reticulum (ER) membrane–associated protein. The amino-terminal peptide of SND1 predominantly associates with SEC61A, which anchors on ER membrane. The SN domain of SND1 catches and guides the nascent synthesized heavy chain (HC) of MHC-I to ER-associated degradation (ERAD), hindering the normal assembly of MHC-I in the ER lumen. In mice model bearing tumors, especially in transgenic OT-I mice, deletion of SND1 promotes the presentation of MHC-I in both B16F10 and MC38 cells, and the infiltration of CD8+ T cells is notably increased in tumor tissue. It was further confirmed that SND1 impaired tumor antigen presentation to cytotoxic CD8+ T cells both in vivo and in vitro. These findings reveal SND1 as a novel ER-associated protein facilitating immune evasion of tumor cells through redirecting HC to ERAD pathway that consequently interrupts antigen presentation.


2020 ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background: Modulation of the host immune response by nematode parasites has been widely reported. Rhodaneses (thiosulfate: cyanide sulfurtransferases) are present in a wide range of organisms, such as archaea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homologue could be bound by goat peripheral blood mononuclear cells (PBMCs) in vivo.Methods: In the present study, we cloned and produced a recombinant rhodanese protein originating from Haemonchus contortus (rHCRD), a parasitic nematode of small ruminants. rHCRD was co-incubated with goat PBMCs to assess its immunomodulatory effects on proliferation, apoptosis and cytokine secretion.Results: We verified that the natural HCRD protein localized predominantly to the bowel wall and body surface of the parasite. We further demonstrated that serum produced by goats artificially infected with H. contortus successfully recognized rHCRD, which bound to goat PBMCs. rHCRD suppressed proliferation of goat PBMCs stimulated by concanavalin A but did not induce apoptosis in goat PBMCs. The production of TNF-α and IFN-γ decreased significantly, whereas secretion of IL-10 and TGF-β1 increased, in goat PBMCs after exposure to rHCRD. rHCRD also inhibited phagocytosis by goat monocytes. Moreover, rHCRD down-regulated the expression of major histocompatibility complex (MHC)-II on goat monocytes in a dose-dependent manner, but did not alter MHC-I expression. Conclusions: These results propose a possible immunomodulatory target that may help illuminate the interactions between parasites and their hosts at the molecular level and reveal innovative protein species as candidate drug and vaccine targets.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background Modulation of the host immune response by nematode parasites has been widely reported. Rhodaneses (thiosulfate: cyanide sulfurtransferases) are present in a wide range of organisms, such as archaea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homologue could be bound by goat peripheral blood mononuclear cells (PBMCs) in vivo. Methods In the present study, we cloned and produced a recombinant rhodanese protein originating from Haemonchus contortus (rHCRD), a parasitic nematode of small ruminants. rHCRD was co-incubated with goat PBMCs to assess its immunomodulatory effects on proliferation, apoptosis and cytokine secretion. Results We verified that the natural HCRD protein localized predominantly to the bowel wall and body surface of the parasite. We further demonstrated that serum produced by goats artificially infected with H. contortus successfully recognized rHCRD, which bound to goat PBMCs. rHCRD suppressed proliferation of goat PBMCs stimulated by concanavalin A but did not induce apoptosis in goat PBMCs. The production of TNF-α and IFN-γ decreased significantly, whereas secretion of IL-10 and TGF-β1 increased, in goat PBMCs after exposure to rHCRD. rHCRD also inhibited phagocytosis by goat monocytes. Moreover, rHCRD downregulated the expression of major histocompatibility complex (MHC)-II on goat monocytes in a dose-dependent manner, but did not alter MHC-I expression. Conclusions These results propose a possible immunomodulatory target that may help illuminate the interactions between parasites and their hosts at the molecular level and reveal innovative protein species as candidate drug and vaccine targets.


Toxics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 76
Author(s):  
Yeon-Mi Lim ◽  
Haewon Kim ◽  
Seong Kwang Lim ◽  
Jean Yoo ◽  
Ji-Young Lee ◽  
...  

The toxicity profiles of the widely used guanidine-based chemicals have not been fully elucidated. Herein, we evaluated the in vitro and in vivo toxicity of eight guanidine-based chemicals, focusing on inhalation toxicity. Among the eight chemicals, dodecylguanidine hydrochloride (DGH) was found to be the most cytotoxic (IC50: 0.39 μg/mL), as determined by the water soluble tetrazolium salts (WST) assay. An acute inhalation study for DGH was conducted using Sprague-Dawley rats at 8.6 ± 0.41, 21.3 ± 0.83, 68.0 ± 3.46 mg/m3 for low, middle, and high exposure groups, respectively. The levels of lactate dehydrogenase, polymorphonuclear leukocytes, and cytokines (MIP-2, TGF-β1, IL-1β, TNF-α, and IL-6) in the bronchoalveolar lavage fluid increased in a concentration-dependent manner. Histopathological examination revealed acute inflammation with necrosis in the nasal cavity and inflammation around terminal bronchioles and alveolar ducts in the lungs after DGH inhalation. The LC50 of DGH in rats after exposure for 4 h was estimated to be >68 mg/m3. Results from the inhalation studies showed that DGH was more toxic in male rats than in female rats. Overall, DGH was found to be the most cytotoxic chemical among guanidine-based chemicals. Exposure to aerosols of DGH could induce harmful pulmonary effects on human health.


Sign in / Sign up

Export Citation Format

Share Document