scholarly journals Mitochondrial volume fraction controls translation of nuclear-encoded mitochondrial proteins

2019 ◽  
Author(s):  
Tatsuhisa Tsuboi ◽  
Matheus P. Viana ◽  
Fan Xu ◽  
Jingwen Yu ◽  
Raghav Chanchani ◽  
...  

Mitochondria are dynamic in their size and morphology yet must also precisely control their protein composition according to cellular energy demand. This control is particularly complicated for mitochondria, as they must coordinate gene expression from both the nuclear and mitochondrial genome. We have found that cells are able to use this dynamic morphology to post-transcriptionally coordinate protein expression with the metabolic demands of the cell through enhanced mRNA localization to the mitochondria. As yeast switch to respiratory metabolism, they increase their mitochondrial volume fraction that is, the ratio of mitochondrial volume to intracellular volume which drives the localization of nuclear-encoded mitochondrial mRNAs to the surface of the mitochondria. Through artificial tethering experiments, we show that this mitochondrial localization is sufficient to increase protein production, whereas sequestering mRNAs away from the mitochondrial surface decreases protein production, and those cells are deficient in growth in respiratory conditions. Furthermore, we find that this mRNA sensitivity to mitochondrial volume fraction is driven by the speed of translation downstream of the mitochondrial targeting sequence (MTS), as local ribosome stalling through a stretch of polyprolines in the nascent peptide can drive constitutive localization of mRNAs to the mitochondria. This points to a mechanism by which organelle volume fraction provides feedback to regulate organelle-specific gene expression through mRNA localization while potentially circumventing the need to directly coordinate with the nuclear genome.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Tatsuhisa Tsuboi ◽  
Matheus P Viana ◽  
Fan Xu ◽  
Jingwen Yu ◽  
Raghav Chanchani ◽  
...  

Mitochondria are dynamic organelles that must precisely control their protein composition according to cellular energy demand. Although nuclear-encoded mRNAs can be localized to the mitochondrial surface, the importance of this localization is unclear. As yeast switch to respiratory metabolism, there is an increase in the fraction of the cytoplasm that is mitochondrial. Our data point to this change in mitochondrial volume fraction increasing the localization of certain nuclear-encoded mRNAs to the surface of the mitochondria. We show that mitochondrial mRNA localization is necessary and sufficient to increase protein production to levels required during respiratory growth. Furthermore, we find that ribosome stalling impacts mRNA sensitivity to mitochondrial volume fraction and counterintuitively leads to enhanced protein synthesis by increasing mRNA localization to mitochondria. This points to a mechanism by which cells are able to use translation elongation and the geometric constraints of the cell to fine-tune organelle-specific gene expression through mRNA localization.


2011 ◽  
Vol 410 ◽  
pp. 79-80
Author(s):  
Tai Horng Young

Our previous study has illustrated that chitosan could enhance human anterior cruciate ligament cells to exhibit a dramatic effect on increasing the gene expression of transforming growth factor β1, which is a specific gene for wound healing and collagen synthesis. However, most of cells could not adhere and proliferate well on chitosan. In order to overcome this drawback, we introduced polycaprolactone (PCL) into chitosan by the method of blending in this study. It was found that the morphology, viability and gene expression of specific cells on the chitosan/PCL blended materials could be effectively regulated. Therefore, it is possible to combine the advantages of chitosan and PCL to create a new blended material, which could control cellular morphologies specifically, and further to regulate the gene expression and protein production of cells for specific applications.


Sign in / Sign up

Export Citation Format

Share Document