scholarly journals Mitochondrial volume fraction and translation duration impact mitochondrial mRNA localization and protein synthesis

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Tatsuhisa Tsuboi ◽  
Matheus P Viana ◽  
Fan Xu ◽  
Jingwen Yu ◽  
Raghav Chanchani ◽  
...  

Mitochondria are dynamic organelles that must precisely control their protein composition according to cellular energy demand. Although nuclear-encoded mRNAs can be localized to the mitochondrial surface, the importance of this localization is unclear. As yeast switch to respiratory metabolism, there is an increase in the fraction of the cytoplasm that is mitochondrial. Our data point to this change in mitochondrial volume fraction increasing the localization of certain nuclear-encoded mRNAs to the surface of the mitochondria. We show that mitochondrial mRNA localization is necessary and sufficient to increase protein production to levels required during respiratory growth. Furthermore, we find that ribosome stalling impacts mRNA sensitivity to mitochondrial volume fraction and counterintuitively leads to enhanced protein synthesis by increasing mRNA localization to mitochondria. This points to a mechanism by which cells are able to use translation elongation and the geometric constraints of the cell to fine-tune organelle-specific gene expression through mRNA localization.

2019 ◽  
Author(s):  
Tatsuhisa Tsuboi ◽  
Matheus P. Viana ◽  
Fan Xu ◽  
Jingwen Yu ◽  
Raghav Chanchani ◽  
...  

Mitochondria are dynamic in their size and morphology yet must also precisely control their protein composition according to cellular energy demand. This control is particularly complicated for mitochondria, as they must coordinate gene expression from both the nuclear and mitochondrial genome. We have found that cells are able to use this dynamic morphology to post-transcriptionally coordinate protein expression with the metabolic demands of the cell through enhanced mRNA localization to the mitochondria. As yeast switch to respiratory metabolism, they increase their mitochondrial volume fraction that is, the ratio of mitochondrial volume to intracellular volume which drives the localization of nuclear-encoded mitochondrial mRNAs to the surface of the mitochondria. Through artificial tethering experiments, we show that this mitochondrial localization is sufficient to increase protein production, whereas sequestering mRNAs away from the mitochondrial surface decreases protein production, and those cells are deficient in growth in respiratory conditions. Furthermore, we find that this mRNA sensitivity to mitochondrial volume fraction is driven by the speed of translation downstream of the mitochondrial targeting sequence (MTS), as local ribosome stalling through a stretch of polyprolines in the nascent peptide can drive constitutive localization of mRNAs to the mitochondria. This points to a mechanism by which organelle volume fraction provides feedback to regulate organelle-specific gene expression through mRNA localization while potentially circumventing the need to directly coordinate with the nuclear genome.


2011 ◽  
Vol 301 (6) ◽  
pp. E1236-E1242 ◽  
Author(s):  
Gabriel J. Wilson ◽  
Donald K. Layman ◽  
Christopher J. Moulton ◽  
Layne E. Norton ◽  
Tracy G. Anthony ◽  
...  

Muscle protein synthesis (MPS) increases after consumption of a protein-containing meal but returns to baseline values within 3 h despite continued elevations of plasma amino acids and mammalian target of rapamycin (mTORC1) signaling. This study evaluated the potential for supplemental leucine (Leu), carbohydrates (CHO), or both to prolong elevated MPS after a meal. Male Sprague-Dawley rats (∼270 g) trained to consume three meals daily were food deprived for 12 h, and then blood and gastrocnemius muscle were collected 0, 90, or 180 min after a standard 4-g test meal (20% whey protein). At 135 min postmeal, rats were orally administered 2.63 g of CHO, 270 mg of Leu, both, or water (sham control). Following test meal consumption, MPS peaked at 90 min and then returned to basal ( time 0) rates at 180 min, although ribosomal protein S6 kinase and eIF4E-binding protein-1 phosphorylation remained elevated. In contrast, rats administered Leu and/or CHO supplements at 135 min postmeal maintained peak MPS through 180 min. MPS was inversely associated with the phosphorylation states of translation elongation factor 2, the “cellular energy sensor” adenosine monophosphate-activated protein kinase-α (AMPKα) and its substrate acetyl-CoA carboxylase, and increases in the ratio of AMP/ATP. We conclude that the incongruity between MPS and mTORC1 at 180 min reflects a block in translation elongation due to reduced cellular energy. Administering Leu or CHO supplements ∼2 h after a meal maintains cellular energy status and extends the postprandial duration of MPS.


1988 ◽  
Vol 8 (1) ◽  
pp. 309-320 ◽  
Author(s):  
E E Jarvis ◽  
D C Hagen ◽  
G F Sprague

STE3 mRNA is present only in Saccharomyces cerevisiae alpha cells, not in a or a/alpha cells, and the transcript level increases about fivefold when cells are treated with a-factor mating pheromone. Deletions in the 5' noncoding region of STE3 defined a 43-base-pair (bp) upstream activation sequence (UAS) that can impart both modes of regulation to a CYC1-lacZ fusion when substituted for the native CYC1 UAS. UAS activity required the alpha 1 product of MAT alpha, which is known to be required for transcription of alpha-specific genes. A chromosomal deletion that removed only 14 bp of the STE3 UAS reduced STE3 transcript levels 50- to 100-fold, indicating that the UAS is essential for expression. The STE3 UAS shares a 26-bp homology with the 5' noncoding sequences of the only other known alpha-specific genes, MF alpha 1 and MF alpha 2. We view the homology as having two components--a nearly palindromic 16-bp "P box" and an adjacent 10-bp "Q box." A synthetic STE3 P box was inactive as a UAS; a perfect palindrome P box was active in all three cell types. We propose that the P box is the binding site for a transcription activator, but that alpha 1 acting via the Q box is required for this activator to bind to the imperfect P boxes of alpha-specific genes. Versions of the P box are also found upstream of a-specific genes, within the binding sites of the repressor alpha 2 encoded by MAT alpha. Thus, the products of MAT alpha may render gene expression alpha or a-specific by controlling access of the same transcription activator to its binding site, the P box.


2021 ◽  
Vol 8 ◽  
Author(s):  
Darby J. Ballard ◽  
Hao-Yun Peng ◽  
Jugal Kishore Das ◽  
Anil Kumar ◽  
Liqing Wang ◽  
...  

Eukaryotic Elongation Factor-2 Kinase (eEF2K) acts as a negative regulator of protein synthesis, translation, and cell growth. As a structurally unique member of the alpha-kinase family, eEF2K is essential to cell survival under stressful conditions, as it contributes to both cell viability and proliferation. Known as the modulator of the global rate of protein translation, eEF2K inhibits eEF2 (eukaryotic Elongation Factor 2) and decreases translation elongation when active. eEF2K is regulated by various mechanisms, including phosphorylation through residues and autophosphorylation. Specifically, this protein kinase is downregulated through the phosphorylation of multiple sites via mTOR signaling and upregulated via the AMPK pathway. eEF2K plays important roles in numerous biological systems, including neurology, cardiology, myology, and immunology. This review provides further insights into the current roles of eEF2K and its potential to be explored as a therapeutic target for drug development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Victor Barrenechea ◽  
Maryhory Vargas-Reyes ◽  
Miguel Quiliano ◽  
Pohl Milón

Tetracycline has positively impacted human health as well as the farming and animal industries. Its extensive usage and versatility led to the spread of resistance mechanisms followed by the development of new variants of the antibiotic. Tetracyclines inhibit bacterial growth by impeding the binding of elongator tRNAs to the ribosome. However, a small number of reports indicated that Tetracyclines could also inhibit translation initiation, yet the molecular mechanism remained unknown. Here, we use biochemical and computational methods to study how Oxytetracycline (Otc), Demeclocycline (Dem), and Tigecycline (Tig) affect the translation initiation phase of protein synthesis. Our results show that all three Tetracyclines induce Initiation Factor IF3 to adopt a compact conformation on the 30S ribosomal subunit, similar to that induced by Initiation Factor IF1. This compaction was faster for Tig than Dem or Otc. Furthermore, all three tested tetracyclines affected IF1-bound 30S complexes. The dissociation rate constant of IF1 in early 30S complexes was 14-fold slower for Tig than Dem or Otc. Late 30S initiation complexes (30S pre-IC or IC) exhibited greater IF1 stabilization by Tig than for Dem and Otc. Tig and Otc delayed 50S joining to 30S initiation complexes (30S ICs). Remarkably, the presence of Tig considerably slowed the progression to translation elongation and retained IF1 in the resulting 70S initiation complex (70S IC). Molecular modeling of Tetracyclines bound to the 30S pre-IC and 30S IC indicated that the antibiotics binding site topography fluctuates along the initiation pathway. Mainly, 30S complexes show potential contacts between Dem or Tig with IF1, providing a structural rationale for the enhanced affinity of the antibiotics in the presence of the factor. Altogether, our data indicate that Tetracyclines inhibit translation initiation by allosterically perturbing the IF3 layout on the 30S, retaining IF1 during 70S IC formation, and slowing the transition toward translation elongation. Thus, this study describes a new complementary mechanism by which Tetracyclines may inhibit bacterial protein synthesis.


2011 ◽  
Vol 1 (2) ◽  
pp. 52-61
Author(s):  
Bernardo Neme Ide ◽  
Fernanda Lorenzi Lazarim ◽  
Denise Vaz de Macedo

A resposta adaptativa ao treinamento físico é determinada pelo tipo, volume e frequência de aplicação dos estímulos, que ativam vias de sinalização distintas, a transcrição de genes específicos e posterior síntese protéica. O treinamento resistido está relacionado à ativação da enzima mTOR, proporcionada pelo hormônio IGF-1 e estimulada pela insulina, quando um carboidrato é consumido após a atividade física. Estas vias de sinalização levam à inibição da transcrição de genes relacionados à atrofia e aumento da síntese de proteínas contráteis e metabólicas, proporcionando um aumento da massa muscular, conhecido como hipertrofia. Atualmente, evidências sugerem que, além das sinalizações dos hormônios, os estímulos mecânicos (mecanotransdução) também podem influenciar a ativação gênica durante o processo hipertrófico. A ativação de células satélites, proporcionada pelo estresse mecânico, fatores de crescimento, radicais livres e citocinas é de suma importância para o crescimento muscular. Devido à relevância deste assunto, o presente trabalho traz uma revisão da literatura a respeito dos processos envolvidos na resposta hipertrófica, em decorrência do treinamento físico. Embora o processo hipertrófico seja bastante estudado, os mecanismos moleculares, tanto em nível gênico quanto protéico, envolvidos no processo adaptativo ainda não são totalmente compreendidos. Neste sentido, o avanço nas técnicas de biologia molecular como genômica, transcriptoma e proteômica abrem caminhos para futuras investigações nesta área.Palavras-chave: treino resistido, adaptações ao treinamento de força, células satélites, IGF-1, síntese protéica.The adaptation process to physical training is determined by the type, volume and frequency of stimulation, activating distinct signaling pathways, specific gene transcription and then protein synthesis. Resistance-training is related to mTOR enzyme activation induced by IGF-1 and stimulated by insulin when carbohydrates are consumed after physical activity. These pathways, may lead to the inhibition of gene transcription related to atrophy and the increment of contractile and metabolic protein synthesis causing an increase on muscle mass known as hypertrophy. Presently, there is evidence to suggest that besides hormone signaling pathways, mechanical stimulation (mechanotransduction) may also influence the gene activation during the hypertrophic process. The satellite cells activation induced by mechanical stress, growth factors, free radicals, and cytokines is crucial for muscle growth. Due to the importance of this topic, the present study, proposes a literature review about the processes related to the hypertrophic responses to physical training. Despite the frequent studies on the hypertrophic process, the molecular mechanisms (both at gene and protein levels) involved in the adaptation process is yet to be fully understood. Thus, advances in molecular biology techniques such as genomic, transcriptoma and proteomic open ways for future investigations in this area.Key words: Resistance-training, strength training adaptations, satellite cells, IGF-1, protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document