scholarly journals Impact and evolutionary determinants of Neanderthal introgression on transcriptional and post-transcriptional regulation

2019 ◽  
Author(s):  
Martin Silvert ◽  
Lluis Quintana-Murci ◽  
Maxime Rotival

AbstractArchaic admixture is increasingly recognized as an important source of diversity in modern humans, with Neanderthal haplotypes covering 1-3% of the genome of present-day Eurasians. Recent work has shown that archaic introgression has contributed to human phenotypic diversity, mostly through the regulation of gene expression. Yet, the mechanisms through which archaic variants alter gene expression, and the forces driving the introgression landscape at regulatory regions remain elusive. Here, we explored the impact of archaic introgression on transcriptional and post-transcriptional regulation, focusing on promoters and enhancers across 127 different tissues as well as microRNA-mediated regulation. Although miRNAs themselves harbor few archaic variants, we found that some of these variants may have a strong impact on miRNA-mediated gene regulation. Enhancers were by far the regulatory elements most affected by archaic introgression, with one third of the tissues tested presenting significant enrichments. Specifically, we found strong enrichments of archaic variants in adipose-related tissues and primary T cells, even after accounting for various genomic and evolutionary confounders such as recombination rate and background selection. Interestingly, we identified signatures of adaptive introgression at enhancers of some key regulators of adipogenesis, raising the interesting hypothesis of a possible adaptation of early Eurasians to colder climates. Collectively, this study sheds new light onto the mechanisms through which archaic admixture have impacted gene regulation in Eurasians and, more generally, increases our understanding of the contribution of Neanderthals to the regulation of acquired immunity and adipose homeostasis in modern humans.

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1634 ◽  
Author(s):  
Ng Desi ◽  
Yvonne Tay

Post-transcriptional regulation plays a key role in modulating gene expression, and the perturbation of transcriptomic equilibrium has been shown to drive the development of multiple diseases including cancer. Recent studies have revealed the existence of multiple post-transcriptional processes that coordinatively regulate the expression and function of each RNA transcript. In this review, we summarize the latest research describing various mechanisms by which small alterations in RNA processing or function can potentially reshape the transcriptomic landscape, and the impact that this may have on cancer development.


2017 ◽  
Author(s):  
Christine M. Hustmyer ◽  
Chelsea A. Simpson ◽  
Stephen G. Olney ◽  
Matthew L. Bochman ◽  
Julia C. van Kessel

AbstractExperimental studies of transcriptional regulation in bacteria require the ability to precisely measure changes in gene expression, often accomplished through the use of reporter genes. However, the boundaries of promoter sequences required for transcription are often unknown, thus complicating construction of reporters and genetic analysis of transcriptional regulation. Here, we analyze reporter libraries to define the promoter boundaries of theluxCDABEbioluminescence operon and thebetIBA-proXWVosmotic stress operon inVibrio harveyi. We describe a new method called RAIL (RapidArbitrary PCRInsertionLibraries) that combines the power of arbitrary PCR and isothermal DNA assembly to rapidly clone promoter fragments of various lengths upstream of reporter genes to generate large libraries. To demonstrate the versatility and efficiency of RAIL, we analyzed the promoters driving expression of theluxCDABEandbetIBA-proXWVoperons and created libraries of DNA fragments from these loci fused to fluorescent reporters. Using flow cytometry sorting and deep sequencing, we identified the DNA regions necessary and sufficient for maximum gene expression for each promoter. These analyses uncovered previously unknown regulatory sequences and validated known transcription factor binding sites. We applied this high-throughput method togfp, mCherry, andlacZreporters and multiple promoters inV. harveyi. We anticipate that the RAIL method will be easily applicable to other model systems for genetic, molecular, and cell biological applications.ImportanceGene reporter constructs have long been essential tools for studying gene regulation in bacteria, particularly following the recent advent of fluorescent gene reporters. We developed a new method that enables efficient construction of promoter fusions to reporter genes to study gene regulation. We demonstrate the versatility of this technique in the model bacteriumVibrio harveyiby constructing promoter libraries for three bacterial promoters using three reporter genes. These libraries can be used to determine the DNA sequences required for gene expression, revealing regulatory elements in promoters. This method is applicable to various model systems and reporter genes for assaying gene expression.


2020 ◽  
Author(s):  
Ying Liu ◽  
Ragini Rai ◽  
Lei Zhu ◽  
Changqing Zhang ◽  
Frances Rocamora ◽  
...  

AbstractNOT1 is the scaffold of the CCR4-NOT complex, a highly conserved multi-protein complex that regulates gene expression in eukaryotes. As opposed to most eukaryotes in which NO1 is encoded by a single gene, malaria parasites, Plasmodium falciparum, carry two NOT1 paralogues, PfNOT1.1 and PfNOT1.2. Here we showed that the two PfNOT1 proteins function as mutually exclusive scaffolds within the PfCCR4-NOT protein complexes that are abundantly located in the parasite cytoplasm. Intriguingly, the two PfNOT1 paralogues appear to have directly opposing functions in regulation of mRNA abundance across the P. falciparum IDC, in which PfNTO1.1 and PfNOT1.2 induces and suppresses transcript abundance during their active transcription, respectively. Targeted disruption of either of the PfNOT1 gene causes defective growth and lower invasion rates presumably due to the deregulation the P. falciparum IDC transcriptional cascade. We also demonstrate that the regulatory function of both PfNOT1.1 and PfNOT1.2 are related to another PfCCR4-NOT subunit, PfCaf1, which indicates their activity during post-transcriptional regulation. Indeed RNA decay studies suggest the active role of both PfNOT1 proteins in regulation of mRNA stability in a directly opposing manner.Author summaryCCR4-NOT complex is a highly conserved multi-protein complex that regulates gene expression in eukaryotes. NOT1 serves as the scaffold of the complex and plays important roles in gene regulation both transcriptionally and post-transcriptionally. As opposed to other eukaryotes, P. falciparum encodes two paralogues of PfNOT1, raising the question as to the significance to possess an additional copy of PfNOT1 in the parasite. Here we described antagonistic regulatory functions of two PfNOT1 paralogues in gene expression during the 48-hour intraerythrocytic developmental cycle. We also reported that their regulatory functions are predominantly post-transcriptional and proposed a model in which distinct PfCCR4-NOT complexes defined by mutually exclusive PfNOT1 scaffolds differentially regulate PfCAF1 function in mRNA decay. This study highlights the importance of post-transcriptional regulation in P. falciparum and provides novel insights into mechanisms of gene regulation in this organism. The unique presence of two PfNOT1 paralogues may also open avenues for the development of new drug targets for anti-malarial control.


2018 ◽  
Vol 200 (11) ◽  
Author(s):  
Christine M. Hustmyer ◽  
Chelsea A. Simpson ◽  
Stephen G. Olney ◽  
Douglas B. Rusch ◽  
Matthew L. Bochman ◽  
...  

ABSTRACTExperimental studies of transcriptional regulation in bacteria require the ability to precisely measure changes in gene expression, often accomplished through the use of reporter genes. However, the boundaries of promoter sequences required for transcription are often unknown, thus complicating the construction of reporters and genetic analysis of transcriptional regulation. Here, we analyze reporter libraries to define the promoter boundaries of theluxCDABEbioluminescence operon and thebetIBA-proXWVosmotic stress operon inVibrio harveyi. We describe a new method calledrapidarbitrary PCRinsertionlibraries (RAIL) that combines the power of arbitrary PCR and isothermal DNA assembly to rapidly clone promoter fragments of various lengths upstream of reporter genes to generate large libraries. To demonstrate the versatility and efficiency of RAIL, we analyzed the promoters driving expression of theluxCDABEandbetIBA-proXWVoperons and created libraries of DNA fragments from these loci fused to fluorescent reporters. Using flow cytometry sorting and deep sequencing, we identified the DNA regions necessary and sufficient for maximum gene expression for each promoter. These analyses uncovered previously unknown regulatory sequences and validated known transcription factor binding sites. We applied this high-throughput method togfp,mCherry, andlacZreporters and multiple promoters inV. harveyi. We anticipate that the RAIL method will be easily applicable to other model systems for genetic, molecular, and cell biological applications.IMPORTANCEGene reporter constructs have long been essential tools for studying gene regulation in bacteria, particularly following the recent advent of fluorescent gene reporters. We developed a new method that enables efficient construction of promoter fusions to reporter genes to study gene regulation. We demonstrate the versatility of this technique in the model bacteriumVibrio harveyiby constructing promoter libraries for three bacterial promoters using three reporter genes. These libraries can be used to determine the DNA sequences required for gene expression, revealing regulatory elements in promoters. This method is applicable to various model systems and reporter genes for assaying gene expression.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
José L Ruiz ◽  
Lisa C Ranford-Cartwright ◽  
Elena Gómez-Díaz

Abstract Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.


2021 ◽  
Vol 22 (5) ◽  
pp. 2599
Author(s):  
Mégane Collobert ◽  
Ozvan Bocher ◽  
Anaïs Le Nabec ◽  
Emmanuelle Génin ◽  
Claude Férec ◽  
...  

About 8% of the human genome is covered with candidate cis-regulatory elements (cCREs). Disruptions of CREs, described as “cis-ruptions” have been identified as being involved in various genetic diseases. Thanks to the development of chromatin conformation study techniques, several long-range cystic fibrosis transmembrane conductance regulator (CFTR) regulatory elements were identified, but the regulatory mechanisms of the CFTR gene have yet to be fully elucidated. The aim of this work is to improve our knowledge of the CFTR gene regulation, and to identity factors that could impact the CFTR gene expression, and potentially account for the variability of the clinical presentation of cystic fibrosis as well as CFTR-related disorders. Here, we apply the robust GWAS3D score to determine which of the CFTR introns could be involved in gene regulation. This approach highlights four particular CFTR introns of interest. Using reporter gene constructs in intestinal cells, we show that two new introns display strong cooperative effects in intestinal cells. Chromatin immunoprecipitation analyses further demonstrate fixation of transcription factors network. These results provide new insights into our understanding of the CFTR gene regulation and allow us to suggest a 3D CFTR locus structure in intestinal cells. A better understand of regulation mechanisms of the CFTR gene could elucidate cases of patients where the phenotype is not yet explained by the genotype. This would thus help in better diagnosis and therefore better management. These cis-acting regions may be a therapeutic challenge that could lead to the development of specific molecules capable of modulating gene expression in the future.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 466
Author(s):  
Marie-Christine Carpentier ◽  
Cécile Bousquet-Antonelli ◽  
Rémy Merret

The recent development of high-throughput technologies based on RNA sequencing has allowed a better description of the role of post-transcriptional regulation in gene expression. In particular, the development of degradome approaches based on the capture of 5′monophosphate decay intermediates allows the discovery of a new decay pathway called co-translational mRNA decay. Thanks to these approaches, ribosome dynamics could now be revealed by analysis of 5′P reads accumulation. However, library preparation could be difficult to set-up for non-specialists. Here, we present a fast and efficient 5′P degradome library preparation for Arabidopsis samples. Our protocol was designed without commercial kit and gel purification and can be easily done in one working day. We demonstrated the robustness and the reproducibility of our protocol. Finally, we present the bioinformatic reads-outs necessary to assess library quality control.


Sign in / Sign up

Export Citation Format

Share Document