scholarly journals Visual interference can help and hinder memory: Capturing representational detail using the Validated Circular Shape Space

2019 ◽  
Author(s):  
Aedan Y. Li ◽  
Keisuke Fukuda ◽  
Andy C. H. Lee ◽  
Morgan D. Barense

AbstractAlthough we can all agree that interference induces forgetting, there is surprisingly little consensus regarding what type of interference most likely disrupts memory. We previously proposed that the similarity of interference differentially impacts the representational detail of color memory. Here, we extend this work by applying the Validated Circular Shape Space (Li et al., 2020) for the first time to a continuous retrieval task, in which we quantified both the visual similarity of distracting information as well as the representational detail of shape memory. We found that the representational detail of memory was systematically and differentially altered by the similarity of distracting information. Dissimilar distractors disrupted both fine- and coarse-grained information about the target, akin to memory erasure. In contrast, similar distractors disrupted fine-grained target information but increased reliance on coarse-grained information about the target, akin to memory blurring. Notably, these effects were consistent across two mixture models that each implemented a different scaling metric (either angular distance or perceived target similarity), as well as a parameter-free analysis that did not fit the mixture model. These findings suggest that similar distractors will help memory in cases where coarse-grained information is sufficient to identify the target. In other cases where precise fine-grained information is needed to identify the target, similar distractors will impair memory. As these effects have now been observed across both stimulus domains of shape and color, and were robust across multiple scaling metrics and methods of analyses, we suggest that these results provide a general set of principles governing how the nature of interference impacts forgetting.

2021 ◽  
pp. 1-18
Author(s):  
Jean-David Moreau ◽  
Jacques Sciau ◽  
Georges Gand ◽  
Emmanuel Fara

Abstract A recent excavation yielded 118 large tridactyl footprints in the Lower Jurassic Dolomitic Formation of the Causses Basin, at Mongisty in southern France. Most of the tracks are ascribed to Eubrontes giganteus Hitchcock, 1845. They are preserved on a surface of 53 m2 and form parallel rows with a preferential orientation towards the north. Such an abundance and density of E. giganteus is observed for the first time in the Early Jurassic from the Causses Basin. Sedimentological and ichnotaphonomical analyses show that the footprints were made at different time intervals, thus excluding the passage of a large group. In contrast to all other tracksites from the Dolomitic Formation, where tracks are preserved in fine-grained sediments corresponding to low-energy depositional palaeoenvironments, the tracks from Mongisty are preserved in coarse-grained sediment which is a matrix- to clast-supported breccia. Clasts consist of angular to sub-rounded, millimetric to centimetric-scale (up to 2 cm), poorly sorted, randomly oriented, homogeneous dolostone intraclasts floating in a dolomudstone matrix. Sedimentological analysis shows that the depositional environments of Mongisty varied from subtidal to intertidal/supratidal settings in a large and protected flat marsh. The lithology of the track-bearing surfaces indicates that the mudflat of the Causses Basin was sporadically affected by large mud flows that reworked and redeposited mudstone intraclasts coming from the erosion of upstream, dry and partially lithified mud beds. Throughout the world, this type of preservation of dinosaur tracks in tidal matrix- to clast-supported breccias remains rare.


Mineralogia ◽  
2012 ◽  
Vol 43 (1-2) ◽  
pp. 3-127 ◽  
Author(s):  
Anna Wolska

AbstractGranitic plutons (the Dolina Będkowska valley and Pilica area) were found in a few boreholes in the Małopolska Block (MB). These granitic rocks may represent apical parts (apophyses) of a great magmatic bodies (batholiths) located in deeper level of the Ediacaran/Paleozoic basement. They are described as ‘stitching intrusions’, generated during/after collision in Carboniferous/Permian period (~300 Ma) between the Upper Silesian Block (USB) and the Małopolska Block (MB).These rocks are fresh, unaltered granodiorites that are pale grey in colour. They have holocrystalline, medium- to coarse-grained structure and massive texture. For the first time, several mafic microgranular enclaves (MME), varying in size and colour, were found in the granodioritic host (HG). The occurrence of MME in the host granodioritic rocks is evidence of a mingling process between mafic and felsic magmas.The MME are pale/dark grey in colour, fine-grained rocks with ‘porphyritic’ textures. They consist of large megacrysts/xenocrysts of plagioclase, quartz, alkali feldspars and the fine-grained groundmass of pseudo-doleritic textures (lath-shaped plagioclases, blade-shaped amphiboles/biotites). According to their modal/mineral composition, they represent Q-diorites and tonalites.The MME, similar to the host granodiorites (HG), are I-type rocks, exhibit high Na2O content >3.2 wt%; normative diopside or normative corundum occurs (mainly <1%). They are metaluminous to slightly peraluminous (ASI <1.1) and have calc-alkaline, medium-K to high-K character. They generally belong to magnesian series (#Mg=0.20-0.40) and have low agpaitic index (<0.87). They are low evolved magmatic rocks. The rocks studied are enriched in LREEs (La, Ce, Sm) compared to HREEs. The Eu* negative anomaly and high Sr contents point to varying degrees of plagioclase fractionation connected to the mixing process rather than simple fractional crystallization. Both rocks studied (HG and MME) are characterized by a high content of LILEs (K, Ba, Rb) in normalized patterns and a low HFS/LIL elements ratio (Ta, Nb)/(K, Rb, La). The projection points of the rocks studied plot in different fields of various petrochemical diagrams: mainly in the arc granites that are rare in the pre-collisional granites as well as the syn-subductional to post-collisional granites fields.For the first time, inner textures in rock-forming minerals related to mixing processes are described both in the granodioritic host (HG) and in the MME. Mantled boxy cellular plagioclase megacrysts with ‘old cores’ of labradorite composition, and amphibole aggregates with titanite and opaque minerals, represent peritectic rather than primary residual minerals. The plagioclase, quartz and alkali feldspar megacrysts/xenocrysts were mechanically transferred from the granodioritic host (HG) to MME. The presence of lath-shaped plagioclases, blade-shaped amphiboles/biotites and acicular-shaped apatites in the groundmass of the MME is evidence of undercooling of hot mafic blobs in a relatively cold granodioritic magma chamber. The MME were hybridized by leucocratic melt squeezed from the granodioritic magma in a later stage of the mixing process (quartz and alkali crystals in the interstices in the MME groundmass). In the granodiorites (HG), the spike and spongy cellular zones as well as biotite/amphibole zones in plagioclase megacrysts are connected to the mixing process.Both of the rocks studied are characterized by different amounts of major elements (SiO2, Na2O and K2O), trace elements (Ni, Cr, V, Ti and P), #Mg and modified alkali-lime index (MALI) that is related to their origins from different sources. On the other hand, they have similar chondrite-normalized patterns (for trace elements and REE), LILEs contents (Sr, Ba, Rb), aluminum saturation index (ASI) and isotopic signatures (high 86Sr/87Sr (0.079-0.713) and low 143Nd/144Nd (0.512) values but lower than in continental crust), which are evidence of the strong hybridisation of mafic enclaves by the granodioritic host magma. The parental rocks of both rocks studied have a similar mafic signature but were generated in different sources: the host granodiorites (HG) magma in lower continental crust rocks, and the MME magma in enriched upper mantle. The MME crystallized from strongly hybridized magma of intermediate compositions (Q-diorite, tonalite) rather than from primary mafic magma. The host granodiorites (HG) originated from completely homogenized crustal granodioritic magma which inherited its geochemical signature from ancient arc-rocks in a subduction-related setting


2020 ◽  
Vol 149 (5) ◽  
pp. 949-966 ◽  
Author(s):  
Aedan Y. Li ◽  
Jackson C. Liang ◽  
Andy C. H. Lee ◽  
Morgan D. Barense

2021 ◽  
Vol 50 (11) ◽  
pp. 3205-3217
Author(s):  
Emad Ullah Khan ◽  
Abbas Ali Naseem ◽  
Maryam Saleem ◽  
Faisal Rehman ◽  
Syed Waseem Sajjad ◽  
...  

Replacement dolomite occurs in Jurassic Samanasuk Formation in Dara Adam khel area of Kohat ranges, North-Western Himalayas, Pakistan. This study, for the first time, document the process of dolomitization and evolution of strata bound dolomitic bodies. Field investigation, petrography and geochemistry helped in unraveling the formation of several dolomitic bodies. Petrographically dolomites comprises of: (1) medium grain crystalline planer subhedral dolomite (Dol-I); (2) fine grained crystalline anhedral non-planer dolomite rhombs (Dol-II); (3) medium to coarse grained crystalline subhedral-anhedral non-planer dolomite (Dol-III) and coarse to very coarse grained crystalline saddle dolomite cements (SD). The saddle dolomites (SD) postdate the replacement dolomites and precede telogenetic calcite (TC) cements. Stable O and C isotope analysis shows that these dolomites have δ18Ovpdb ranging from -4.09% to -10.4 whereas the δ13Cvpdb ranges from +0.8 to +2.51. Major and trace elements data show that Sr concentrations of 145.5 to 173 ppm; Fe contents of 2198 to 8215 ppm; and Mn contents of 93.5 to 411 ppm. Petrographically replacive dolomites, saddle dolomite, and δ18Ovpdb values depicts neomorphism of replacement dolomites that were formed earlier were exposed to late dolomitizing fluids. As a result of basin uplift during the Himalayan orogeny in Eocene time, dolomitization event was stopped through occurrence of meteoric water. The Main Boundary Thrust (MBT) and its splays were most likely essential conduits that channelized dolomitizing fluids from siliciclastic rocks that were buried deeply into the Jurassic carbonates rocks, leading to more extreme dolomitization.


2020 ◽  
Author(s):  
Hugo K. H. Olierook ◽  
Kai Rankenburg ◽  
Stanislav Ulrich ◽  
Christopher L. Kirkland ◽  
Noreen Evans ◽  
...  

Abstract. Dating multiple geological events in single samples using thermochronology and geochronology is relatively common but it is only with the recent advent of triple quadrupole LA-ICP-MS that in situ Rb-Sr dating has become a more commonly applied and powerful tool to date K- and Rb-bearing minerals. Here, we date, for the first time, two generations of mineral assemblages in individual thin sections using the in situ Rb-Sr method. Two distinct mineral assemblages, both probably associated with Au mineralization, are identified in samples from the Tropicana gold mine in the Albany–Fraser Orogen, Western Australia. For Rb-Sr purposes, the key dateable minerals are two generations of biotite, and additional phengite associated with the second assemblage. Our results reveal that the first, coarse-grained generation of biotite grains records a minimum age of 2535 ± 18 Ma, coeval with previous 40Ar/39Ar biotite, Re-Os pyrite and U-Pb rutile results. The second, fine-grained and recrystallized generation of biotite grains record an age of 1207 ± 12 Ma across all samples. Phengite and muscovite yielded broadly similar results at ca. 1.2 Ga but data is overdispersed for a single coeval population of phengite and shows elevated age uncertainties for muscovite. We propose that the ca. 2530 Ma age recorded by various geochronometers represents cooling and exhumation, and that the age of ca. 1210 Ma is related to major shearing associated with the regional deformation associated with Stage II of the Albany–Fraser Orogeny. This is the first time that an age of ca. 1210 Ma has been identified in the Tropicana Zone, which may have ramifications for constraining the timing of mineralization in the region. The in situ Rb-Sr technique is currently the only tool capable of resolving both geological events in these rocks.


Author(s):  
Wang Zheng-fang ◽  
Z.F. Wang

The main purpose of this study highlights on the evaluation of chloride SCC resistance of the material,duplex stainless steel,OOCr18Ni5Mo3Si2 (18-5Mo) and its welded coarse grained zone(CGZ).18-5Mo is a dual phases (A+F) stainless steel with yield strength:512N/mm2 .The proportion of secondary Phase(A phase) accounts for 30-35% of the total with fine grained and homogeneously distributed A and F phases(Fig.1).After being welded by a specific welding thermal cycle to the material,i.e. Tmax=1350°C and t8/5=20s,microstructure may change from fine grained morphology to coarse grained morphology and from homogeneously distributed of A phase to a concentration of A phase(Fig.2).Meanwhile,the proportion of A phase reduced from 35% to 5-10°o.For this reason it is known as welded coarse grained zone(CGZ).In association with difference of microstructure between base metal and welded CGZ,so chloride SCC resistance also differ from each other.Test procedures:Constant load tensile test(CLTT) were performed for recording Esce-t curve by which corrosion cracking growth can be described, tf,fractured time,can also be recorded by the test which is taken as a electrochemical behavior and mechanical property for SCC resistance evaluation. Test environment:143°C boiling 42%MgCl2 solution is used.Besides, micro analysis were conducted with light microscopy(LM),SEM,TEM,and Auger energy spectrum(AES) so as to reveal the correlation between the data generated by the CLTT results and micro analysis.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1762
Author(s):  
Artur Maciej ◽  
Natalia Łatanik ◽  
Maciej Sowa ◽  
Izabela Matuła ◽  
Wojciech Simka

One method of creating a brass coating is through electrodeposition, which is most often completed in cyanide galvanic baths. Due to their toxicity, many investigations focused on the development of more environmentally friendly alternatives. The purpose of the study was to explore a new generation of non-aqueous cyanide-free baths based on 1-ethyl-3-methylimidazolium acetate ionic liquids. The study involved the formation of copper, zinc, and brass coatings. The influence of the bath composition, cathodic current density, and temperature was determined. The obtained coatings were characterized in terms of their morphology, chemical composition, phase composition, roughness, and corrosion resistance. It was found that the structure of the obtained coatings is strongly dependent on the process parameters. The three main structure types observed were as follows: fine-grained, porous, and olive-like. To the best knowledge of the authors, it is the first time the olive-like structure was observed in the case of an electrodeposited coating. The Cu-Zn coatings consisted of 19–96 at. % copper and exhibited relatively good corrosion resistance. A significant improvement of corrosion properties was found in the case of copper and brass coatings with the olive-like structure.


Author(s):  
Carlos R Argüelles ◽  
Manuel I Díaz ◽  
Andreas Krut ◽  
Rafael Yunis

Abstract The formation and stability of collisionless self-gravitating systems is a long standing problem, which dates back to the work of D. Lynden-Bell on violent relaxation, and extends to the issue of virialization of dark matter (DM) halos. An important prediction of such a relaxation process is that spherical equilibrium states can be described by a Fermi-Dirac phase-space distribution, when the extremization of a coarse-grained entropy is reached. In the case of DM fermions, the most general solution develops a degenerate compact core surrounded by a diluted halo. As shown recently, the latter is able to explain the galaxy rotation curves while the DM core can mimic the central black hole. A yet open problem is whether this kind of astrophysical core-halo configurations can form at all, and if they remain stable within cosmological timescales. We assess these issues by performing a thermodynamic stability analysis in the microcanonical ensemble for solutions with given particle number at halo virialization in a cosmological framework. For the first time we demonstrate that the above core-halo DM profiles are stable (i.e. maxima of entropy) and extremely long lived. We find the existence of a critical point at the onset of instability of the core-halo solutions, where the fermion-core collapses towards a supermassive black hole. For particle masses in the keV range, the core-collapse can only occur for Mvir ≳ E9M⊙ starting at zvir ≈ 10 in the given cosmological framework. Our results prove that DM halos with a core-halo morphology are a very plausible outcome within nonlinear stages of structure formation.


Author(s):  
Zhuliang Yao ◽  
Shijie Cao ◽  
Wencong Xiao ◽  
Chen Zhang ◽  
Lanshun Nie

In trained deep neural networks, unstructured pruning can reduce redundant weights to lower storage cost. However, it requires the customization of hardwares to speed up practical inference. Another trend accelerates sparse model inference on general-purpose hardwares by adopting coarse-grained sparsity to prune or regularize consecutive weights for efficient computation. But this method often sacrifices model accuracy. In this paper, we propose a novel fine-grained sparsity approach, Balanced Sparsity, to achieve high model accuracy with commercial hardwares efficiently. Our approach adapts to high parallelism property of GPU, showing incredible potential for sparsity in the widely deployment of deep learning services. Experiment results show that Balanced Sparsity achieves up to 3.1x practical speedup for model inference on GPU, while retains the same high model accuracy as finegrained sparsity.


Sign in / Sign up

Export Citation Format

Share Document