scholarly journals A Membrane-Bound Cytochrome EnablesMethanosarcina acetivoransto Conserve Energy to Support Growth from Extracellular Electron Transfer

2019 ◽  
Author(s):  
Dawn E Holmes ◽  
Toshiyuki Ueki ◽  
Hai-Yan Tang ◽  
Jinjie Zhou ◽  
Jessica A Smith ◽  
...  

AbstractConservation of energy to support growth solely from extracellular electron transfer was demonstrated for the first time in a methanogen.Methanosarcina acetivoransgrew with methanol as the sole electron donor and the extracellular electron acceptor anthraquione-2,6-disulfonate (AQDS) as the sole electron acceptor when methane production was inhibited with bromoethanesulfonate. Transcriptomics revealed that transcripts for the gene for the transmembrane, multi-heme,c-type cytochrome MmcA were 4-fold higher in AQDS-respiring cells versus methanogenic cells. A strain in which the gene for MmcA was deleted failed to grow via AQDS reduction whereas strains in which other cytochrome genes were deleted grew as well as the wild-type strain. The MmcA-deficient strain grew with the conversion of methanol or acetate to methane, suggesting that MmcA has a specialized role as a conduit for extracellular electron transfer. Enhanced expression of genes for methanol conversion to methyl-coenzyme M and components of the Rnf complex suggested that methanol is oxidized to carbon dioxide in AQDS-respiring cells through a pathway that is similar to methyl-coenezyme M oxidation in methanogenic cells. However, during AQDS respiration the Rnf complex and reduced methanophenazine probably transfer electrons to MmcA, which functions as the terminal reductase for AQDS reduction. Extracellular electron transfer may enable survival of methanogens in dynamic environments in which oxidized humic substances and Fe(III) oxides are intermittently available. The availability of tools for genetic manipulation ofM. acetivoransmakes it an excellent model microbe for evaluatingc-type cytochrome-dependent extracellular electron transfer in Archaea.ImportanceExtracellular electron exchange inMethanosarcinaspecies and closely related Archaea plays an important role in the global carbon cycle and can enhance the speed and stability of anaerobic digestion, an important bioenergy strategy. The potential importance ofc-type cytochromes for extracellular electron transfer to syntrophic bacterial partners and/or Fe(III) minerals in some Archaea has been suspected for some time, but the studies withMethanosarcina acetivoransreported here provide the first genetic evidence supporting this hypothesis. The results suggest parallels with Gram-negative bacteria, such asShewanellaandGeobacterspecies, in which outer-surfacec-type cytochromes are an essential component for electrical communication with the extracellular environment.M. acetivoransoffers an unprecedented opportunity to study mechanisms for energy conservation from the anaerobic oxidation of one-carbon organic compounds coupled to extracellular electron transfer in Archaea with implications not only for methanogens, but possibly also for anaerobic methane oxidation.

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Dawn E. Holmes ◽  
Toshiyuki Ueki ◽  
Hai-Yan Tang ◽  
Jinjie Zhou ◽  
Jessica A. Smith ◽  
...  

ABSTRACT Extracellular electron exchange in Methanosarcina species and closely related Archaea plays an important role in the global carbon cycle and enhances the speed and stability of anaerobic digestion by facilitating efficient syntrophic interactions. Here, we grew Methanosarcina acetivorans with methanol provided as the electron donor and the humic analogue, anthraquione-2,6-disulfonate (AQDS), provided as the electron acceptor when methane production was inhibited with bromoethanesulfonate. AQDS was reduced with simultaneous methane production in the absence of bromoethanesulfonate. Transcriptomics revealed that expression of the gene for the transmembrane, multiheme, c-type cytochrome MmcA was higher in AQDS-respiring cells than in cells performing methylotrophic methanogenesis. A strain in which the gene for MmcA was deleted failed to grow via AQDS reduction but grew with the conversion of methanol or acetate to methane, suggesting that MmcA has a specialized role as a conduit for extracellular electron transfer. Enhanced expression of genes for methanol conversion to methyl-coenzyme M and the Rnf complex suggested that methanol is oxidized to carbon dioxide in AQDS-respiring cells through a pathway that is similar to methyl-coenzyme M oxidation in methanogenic cells. However, during AQDS respiration the Rnf complex and reduced methanophenazine probably transfer electrons to MmcA, which functions as the terminal reductase for AQDS reduction. Extracellular electron transfer may enable the survival of methanogens in dynamic environments in which oxidized humic substances and Fe(III) oxides are intermittently available. The availability of tools for genetic manipulation of M. acetivorans makes it an excellent model microbe for evaluating c-type cytochrome-dependent extracellular electron transfer in Archaea. IMPORTANCE The discovery of a methanogen that can conserve energy to support growth solely from the oxidation of organic carbon coupled to the reduction of an extracellular electron acceptor expands the possible environments in which methanogens might thrive. The potential importance of c-type cytochromes for extracellular electron transfer to syntrophic bacterial partners and/or Fe(III) minerals in some Archaea was previously proposed, but these studies with Methanosarcina acetivorans provide the first genetic evidence for cytochrome-based extracellular electron transfer in Archaea. The results suggest parallels with Gram-negative bacteria, such as Shewanella and Geobacter species, in which multiheme outer-surface c-type cytochromes are an essential component for electrical communication with the extracellular environment. M. acetivorans offers an unprecedented opportunity to study mechanisms for energy conservation from the anaerobic oxidation of one-carbon organic compounds coupled to extracellular electron transfer in Archaea with implications not only for methanogens but possibly also for Archaea that anaerobically oxidize methane.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kailin Gao ◽  
Yahai Lu

It has been suggested that a few methanogens are capable of extracellular electron transfers. For instance, Methanosarcina barkeri can directly capture electrons from the coexisting microbial cells of other species. Methanothrix harundinacea and Methanosarcina horonobensis retrieve electrons from Geobacter metallireducens via direct interspecies electron transfer (DIET). Recently, Methanobacterium, designated strain YSL, has been found to grow via DIET in the co-culture with Geobacter metallireducens. Methanosarcina acetivorans can perform anaerobic methane oxidation and respiratory growth relying on Fe(III) reduction through the extracellular electron transfer. Methanosarcina mazei is capable of electromethanogenesis under the conditions where electron-transfer mediators like H2 or formate are limited. The membrane-bound multiheme c-type cytochromes (MHC) and electrically-conductive cellular appendages have been assumed to mediate the extracellular electron transfer in bacteria like Geobacter and Shewanella species. These molecules or structures are rare but have been recently identified in a few methanogens. Here, we review the current state of knowledge for the putative extracellular electron transfers in methanogens and highlight the opportunities and challenges for future research.


2012 ◽  
Vol 78 (19) ◽  
pp. 6987-6995 ◽  
Author(s):  
Misha G. Mehta-Kolte ◽  
Daniel R. Bond

ABSTRACTThe current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial generaGeobacterandShewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of theAcidobacteria,Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE),G. fermentansrequired potentials as high as 0.55 V to respire at its maximum rate. In addition,G. fermentanssecreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found inG. fermentanssupernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals thatGeothrixis able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined toShewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies ofGeothrixandGeobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential.


2019 ◽  
Author(s):  
Dario R. Shaw ◽  
Muhammad Ali ◽  
Krishna P. Katuri ◽  
Jeffrey A. Gralnick ◽  
Joachim Reimann ◽  
...  

AbstractAnaerobic ammonium oxidation (anammox) by anammox bacteria contributes significantly to the global nitrogen cycle, and plays a major role in sustainable wastewater treatment. Anammox bacteria convert ammonium (NH4+) to dinitrogen gas (N2) using nitrite (NO2−) or nitric oxide (NO) as the electron acceptor. In the absence of NO2− or NO, anammox bacteria can couple formate oxidation to the reduction of metal oxides such as Fe(III) or Mn(IV). Their genomes contain homologs of Geobacter and Shewanella cytochromes involved in extracellular electron transfer (EET). However, it is still unknown whether anammox bacteria have EET capability and can couple the oxidation of NH4+ with transfer of electrons to carbon-based insoluble extracellular electron acceptors. Here we show using complementary approaches that in the absence of NO2−, freshwater and marine anammox bacteria couple the oxidation of NH4+ with transfer of electrons to carbon-based insoluble extracellular electron acceptors such as graphene oxide (GO) or electrodes poised at a certain potential in microbial electrolysis cells (MECs). Metagenomics, fluorescence in-situ hybridization and electrochemical analyses coupled with MEC performance confirmed that anammox electrode biofilms were responsible for current generation through EET-dependent oxidation of NH4+. 15N-labelling experiments revealed the molecular mechanism of the EET-dependent anammox process. NH4+ was oxidized to N2 via hydroxylamine (NH2OH) as intermediate when electrode was the terminal electron acceptor. Comparative transcriptomics analysis supported isotope labelling experiments and revealed an alternative pathway for NH4+ oxidation coupled to EET when electrode is used as electron acceptor compared to NO2−as electron acceptor. To our knowledge, our results provide the first experimental evidence that marine and freshwater anammox bacteria can couple NH4+ oxidation with EET, which is a significant finding, and challenges our perception of a key player of anaerobic oxidation of NH4+ in natural environments and engineered systems.


2020 ◽  
Author(s):  
Zhe Zeng ◽  
Sjef Boeren ◽  
Varaang Bhandula ◽  
Samuel H. Light ◽  
Eddy J. Smid ◽  
...  

AbstractEthanolamine (EA) is a valuable microbial carbon and nitrogen source derived from phospholipids present in cell membranes. EA catabolism is suggested to occur in so-called bacterial microcompartments (BMCs) and activation of EA utilization (eut) genes is linked to bacterial pathogenesis. Despite reports showing that activation of eut in Listeria monocytogenes is regulated by a vitamin B12-binding riboswitch and that upregulation of eut genes occurs in mice, it remains unknown whether EA catabolism is BMC dependent. Here, we provide evidence for BMC-dependent anaerobic EA utilization via metabolic analysis, proteomics and electron microscopy. First, we show B12-induced activation of the eut operon in L. monocytogenes coupled to uptake and utilization of EA thereby enabling growth. Next, we demonstrate BMC formation in conjunction to EA catabolism with the production of acetate and ethanol in a molar ratio of 2:1. Flux via the ATP generating acetate branch causes an apparent redox imbalance due to reduced regeneration of NAD+ in the ethanol branch resulting in a surplus of NADH. We hypothesize that the redox imbalance is compensated by linking eut BMC to anaerobic flavin-based extracellular electron transfer (EET). Using L. monocytogenes wild type, a BMC mutant and a EET mutant, we demonstrate an interaction between BMC and EET and provide evidence for a role of Fe3+ as an electron acceptor. Taken together, our results suggest an important role of anaerobic BMC-dependent EA catabolism in the physiology of L. monocytogenes, with a crucial role for the flavin-based EET system in redox balancing.IMPORTANCEListeria monocytogenes is a food-borne pathogen causing severe illness and, as such, it is crucial to understand the molecular mechanisms contributing to pathogenicity. One carbon source that allows L. monocytogenes to grow in humans is ethanolamine (EA), which is derived from phospholipids present in eukaryotic cell membranes. It is hypothesized that EA utilization occurs in bacterial microcompartments (BMCs), self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we demonstrate that BMC-driven utilization of EA in L. monocytogenes results in increased energy production essential for anaerobic growth. However, exploiting BMCs and the encapsulated metabolic pathways also requires balancing of oxidative and reductive pathways. We now provide evidence that L. monocytogenes copes with this by linking BMC activity to flavin-based extracellular electron transfer (EET) using iron as an electron acceptor. Our results shed new light on an important molecular mechanism that enables L. monocytogenes to grow using host-derived phospholipid degradation products.


mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Zhe Zeng ◽  
Sjef Boeren ◽  
Varaang Bhandula ◽  
Samuel H. Light ◽  
Eddy J. Smid ◽  
...  

ABSTRACT Ethanolamine (EA) is a valuable microbial carbon and nitrogen source derived from cell membranes. EA catabolism is suggested to occur in a cellular metabolic subsystem called a bacterial microcompartment (BMC), and the activation of EA utilization (eut) genes is linked to bacterial pathogenesis. Despite reports showing that the activation of eut is regulated by a vitamin B12-binding riboswitch and that upregulation of eut genes occurs in mice, it remains unknown whether EA catabolism is BMC dependent in Listeria monocytogenes. Here, we provide evidence for BMC-dependent anaerobic EA utilization via metabolic analysis, proteomics, and electron microscopy. First, we show vitamin B12-induced activation of the eut operon in L. monocytogenes coupled to the utilization of EA, thereby enabling growth. Next, we demonstrate BMC formation connected with EA catabolism with the production of acetate and ethanol in a molar ratio of 2:1. Flux via the ATP-generating acetate branch causes an apparent redox imbalance due to the reduced regeneration of NAD+ in the ethanol branch resulting in a surplus of NADH. We hypothesize that the redox imbalance is compensated by linking eut BMCs to anaerobic flavin-based extracellular electron transfer (EET). Using L. monocytogenes wild-type, BMC mutant, and EET mutant strains, we demonstrate an interaction between BMCs and EET and provide evidence for a role of Fe3+ as an electron acceptor. Taken together, our results suggest an important role of BMC-dependent EA catabolism in L. monocytogenes growth in anaerobic environments like the human gastrointestinal tract, with a crucial role for the flavin-based EET system in redox balancing. IMPORTANCE Listeria monocytogenes is a foodborne pathogen causing severe illness, and as such, it is crucial to understand the molecular mechanisms contributing to pathogenicity. One carbon source that allows L. monocytogenes to grow in humans is ethanolamine (EA), which is derived from phospholipids present in eukaryotic cell membranes. It is hypothesized that EA utilization occurs in bacterial microcompartments (BMCs), self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we demonstrate that BMC-driven utilization of EA in L. monocytogenes results in increased energy production essential for anaerobic growth. However, exploiting BMCs and the encapsulated metabolic pathways also requires the balancing of oxidative and reductive pathways. We now provide evidence that L. monocytogenes copes with this by linking BMC activity to flavin-based extracellular electron transfer (EET) using iron as an electron acceptor. Our results shed new light on an important molecular mechanism that enables L. monocytogenes to grow using host-derived phospholipid degradation products.


2016 ◽  
Vol 82 (17) ◽  
pp. 5428-5443 ◽  
Author(s):  
Sarah E. Barchinger ◽  
Sahand Pirbadian ◽  
Christine Sambles ◽  
Carol S. Baker ◽  
Kar Man Leung ◽  
...  

ABSTRACTIn limiting oxygen as an electron acceptor, the dissimilatory metal-reducing bacteriumShewanella oneidensisMR-1 rapidly forms nanowires, extensions of its outer membrane containing the cytochromes MtrC and OmcA needed for extracellular electron transfer. RNA sequencing (RNA-Seq) analysis was employed to determine differential gene expression over time from triplicate chemostat cultures that were limited for oxygen. We identified 465 genes with decreased expression and 677 genes with increased expression. The coordinated increased expression of heme biosynthesis, cytochrome maturation, and transport pathways indicates thatS. oneidensisMR-1 increases cytochrome production, including the transcription of genes encoding MtrA, MtrC, and OmcA, and transports these decaheme cytochromes across the cytoplasmic membrane during electron acceptor limitation and nanowire formation. In contrast, the expression of themtrAandmtrChomologsmtrFandmtrDeither remains unaffected or decreases under these conditions. TheompWgene, encoding a small outer membrane porin, has 40-fold higher expression during oxygen limitation, and it is proposed that OmpW plays a role in cation transport to maintain electrical neutrality during electron transfer. The genes encoding the anaerobic respiration regulator cyclic AMP receptor protein (CRP) and the extracytoplasmic function sigma factor RpoE are among the transcription factor genes with increased expression. RpoE might function by signaling the initial response to oxygen limitation. Our results show that RpoE activates transcription from promoters upstream ofmtrCandomcA. The transcriptome and mutant analyses ofS. oneidensisMR-1 nanowire production are consistent with independent regulatory mechanisms for extending the outer membrane into tubular structures and for ensuring the electron transfer function of the nanowires.IMPORTANCEShewanella oneidensisMR-1 has the capacity to transfer electrons to its external surface using extensions of the outer membrane called bacterial nanowires. These bacterial nanowires link the cell's respiratory chain to external surfaces, including oxidized metals important in bioremediation, and explain whyS. oneidensiscan be utilized as a component of microbial fuel cells, a form of renewable energy. In this work, we use differential gene expression analysis to focus on which genes function to produce the nanowires and promote extracellular electron transfer during oxygen limitation. Among the genes that are expressed at high levels are those encoding cytochrome proteins necessary for electron transfer.Shewanellacoordinates the increased expression of regulators, metabolic pathways, and transport pathways to ensure that cytochromes efficiently transfer electrons along the nanowires.


2011 ◽  
Vol 81 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Joel Deneau ◽  
Taufeeq Ahmed ◽  
Roger Blotsky ◽  
Krzysztof Bojanowski

Type II diabetes is a metabolic disease mediated through multiple molecular pathways. Here, we report anti-diabetic effect of a standardized isolate from a fossil material - a mineraloid leonardite - in in vitro tests and in genetically diabetic mice. The mineraloid isolate stimulated mitochondrial metabolism in human fibroblasts and this stimulation correlated with enhanced expression of genes coding for mitochondrial proteins such as ATP synthases and ribosomal protein precursors, as measured by DNA microarrays. In the diabetic animal model, consumption of the Totala isolate resulted in decreased weight gain, blood glucose, and glycated hemoglobin. To our best knowledge, this is the first description ever of a fossil material having anti-diabetic activity in pre-clinical models.


Sign in / Sign up

Export Citation Format

Share Document