scholarly journals Orchestrating Single-Cell Analysis with Bioconductor

2019 ◽  
Author(s):  
Robert A. Amezquita ◽  
Vince J. Carey ◽  
Lindsay N. Carpp ◽  
Ludwig Geistlinger ◽  
Aaron T. L. Lun ◽  
...  

AbstractRecent developments in experimental technologies such as single-cell RNA sequencing have enabled the profiling a high-dimensional number of genome-wide features in individual cells, inspiring the formation of large-scale data generation projects quantifying unprecedented levels of biological variation at the single-cell level. The data generated in such projects exhibits unique characteristics, including increased sparsity and scale, in terms of both the number of features and the number of samples. Due to these unique characteristics, specialized statistical methods are required along with fast and efficient software implementations in order to successfully derive biological insights. Bioconductor - an open-source, open-development software project based on the R programming language - has pioneered the analysis of such high-throughput, high-dimensional biological data, leveraging a rich history of software and methods development that has spanned the era of sequencing. Featuring state-of-the-art computational methods, standardized data infrastructure, and interactive data visualization tools that are all easily accessible as software packages, Bioconductor has made it possible for a diverse audience to analyze data derived from cutting-edge single-cell assays. Here, we present an overview of single-cell RNA sequencing analysis for prospective users and contributors, highlighting the contributions towards this effort made by Bioconductor.

2020 ◽  
Author(s):  
Rajasekaran Mahalingam ◽  
Prakash Dharmalingam ◽  
Abirami Santhanam ◽  
Gangarao Davuluri ◽  
Harry Karmouty Quintana ◽  
...  

2016 ◽  
Author(s):  
Hannah R. Dueck ◽  
Rizi Ai ◽  
Adrian Camarena ◽  
Bo Ding ◽  
Reymundo Dominguez ◽  
...  

AbstractRecently, measurement of RNA at single cell resolution has yielded surprising insights. Methods for single-cell RNA sequencing (scRNA-seq) have received considerable attention, but the broad reliability of single cell methods and the factors governing their performance are still poorly known. Here, we conducted a large-scale control experiment to assess the transfer function of three scRNA-seq methods and factors modulating the function. All three methods detected greater than 70% of the expected number of genes and had a 50% probability of detecting genes with abundance greater than 2 to 4 molecules. Despite the small number of molecules, sequencing depth significantly affected gene detection. While biases in detection and quantification were qualitatively similar across methods, the degree of bias differed, consistent with differences in molecular protocol. Measurement reliability increased with expression level for all methods and we conservatively estimate the measurement transfer functions to be linear above ~5-10 molecules. Based on these extensive control studies, we propose that RNA-seq of single cells has come of age, yielding quantitative biological information.


2021 ◽  
Vol 12 ◽  
Author(s):  
Furong Qi ◽  
Wenbo Zhang ◽  
Jialu Huang ◽  
Lili Fu ◽  
Jinfang Zhao

Although immune dysfunction is a key feature of coronavirus disease 2019 (COVID-19), the metabolism-related mechanisms remain elusive. Here, by reanalyzing single-cell RNA sequencing data, we delineated metabolic remodeling in peripheral blood mononuclear cells (PBMCs) to elucidate the metabolic mechanisms that may lead to the progression of severe COVID-19. After scoring the metabolism-related biological processes and signaling pathways, we found that mono-CD14+ cells expressed higher levels of glycolysis-related genes (PKM, LDHA and PKM) and PPP-related genes (PGD and TKT) in severe patients than in mild patients. These genes may contribute to the hyperinflammation in mono-CD14+ cells of patients with severe COVID-19. The mono-CD16+ cell population in COVID-19 patients showed reduced transcription levels of genes related to lysine degradation (NSD1, KMT2E, and SETD2) and elevated transcription levels of genes involved in OXPHOS (ATP6V1B2, ATP5A1, ATP5E, and ATP5B), which may inhibit M2-like polarization. Plasma cells also expressed higher levels of the OXPHOS gene ATP13A3 in COVID-19 patients, which was positively associated with antibody secretion and survival of PCs. Moreover, enhanced glycolysis or OXPHOS was positively associated with the differentiation of memory B cells into plasmablasts or plasma cells. This study comprehensively investigated the metabolic features of peripheral immune cells and revealed that metabolic changes exacerbated inflammation in monocytes and promoted antibody secretion and cell survival in PCs in COVID-19 patients, especially those with severe disease.


2021 ◽  
Author(s):  
Combiz Khozoie ◽  
Nurun Fancy ◽  
Mahdi Moradi Marjaneh ◽  
Alan E. Murphy ◽  
Paul M. Matthews ◽  
...  

Advances in single-cell RNA-sequencing technology over the last decade have enabled exponential increases in throughput: datasets with over a million cells are becoming commonplace. The burgeoning scale of data generation, combined with the proliferation of alternative analysis methods, led us to develop the scFlow toolkit and the nf-core/scflow pipeline for reproducible, efficient, and scalable analyses of single-cell and single-nuclei RNA-sequencing data. The scFlow toolkit provides a higher level of abstraction on top of popular single-cell packages within an R ecosystem, while the nf-core/scflow Nextflow pipeline is built within the nf-core framework to enable compute infrastructure-independent deployment across all institutions and research facilities. Here we present our flexible pipeline, which leverages the advantages of containerization and the potential of Cloud computing for easy orchestration and scaling of the analysis of large case/control datasets by even non-expert users. We demonstrate the functionality of the analysis pipeline from sparse-matrix quality control through to insight discovery with examples of analysis of four recently published public datasets and describe the extensibility of scFlow as a modular, open-source tool for single-cell and single nuclei bioinformatic analyses.


Author(s):  
Rajasekaran Mahalingam ◽  
Prakash Dharmalingam ◽  
Abirami Santhanam ◽  
Sivareddy Kotla ◽  
Gangarao Davuluri ◽  
...  

GigaScience ◽  
2020 ◽  
Vol 9 (10) ◽  
Author(s):  
Mehmet Tekman ◽  
Bérénice Batut ◽  
Alexander Ostrovsky ◽  
Christophe Antoniewski ◽  
Dave Clements ◽  
...  

Abstract Background The vast ecosystem of single-cell RNA-sequencing tools has until recently been plagued by an excess of diverging analysis strategies, inconsistent file formats, and compatibility issues between different software suites. The uptake of 10x Genomics datasets has begun to calm this diversity, and the bioinformatics community leans once more towards the large computing requirements and the statistically driven methods needed to process and understand these ever-growing datasets. Results Here we outline several Galaxy workflows and learning resources for single-cell RNA-sequencing, with the aim of providing a comprehensive analysis environment paired with a thorough user learning experience that bridges the knowledge gap between the computational methods and the underlying cell biology. The Galaxy reproducible bioinformatics framework provides tools, workflows, and trainings that not only enable users to perform 1-click 10x preprocessing but also empower them to demultiplex raw sequencing from custom tagged and full-length sequencing protocols. The downstream analysis supports a range of high-quality interoperable suites separated into common stages of analysis: inspection, filtering, normalization, confounder removal, and clustering. The teaching resources cover concepts from computer science to cell biology. Access to all resources is provided at the singlecell.usegalaxy.eu portal. Conclusions The reproducible and training-oriented Galaxy framework provides a sustainable high-performance computing environment for users to run flexible analyses on both 10x and alternative platforms. The tutorials from the Galaxy Training Network along with the frequent training workshops hosted by the Galaxy community provide a means for users to learn, publish, and teach single-cell RNA-sequencing analysis.


Sign in / Sign up

Export Citation Format

Share Document