scholarly journals Single-Cell RNA Sequencing Analysis of the Immunometabolic Rewiring and Immunopathogenesis of Coronavirus Disease 2019

2021 ◽  
Vol 12 ◽  
Author(s):  
Furong Qi ◽  
Wenbo Zhang ◽  
Jialu Huang ◽  
Lili Fu ◽  
Jinfang Zhao

Although immune dysfunction is a key feature of coronavirus disease 2019 (COVID-19), the metabolism-related mechanisms remain elusive. Here, by reanalyzing single-cell RNA sequencing data, we delineated metabolic remodeling in peripheral blood mononuclear cells (PBMCs) to elucidate the metabolic mechanisms that may lead to the progression of severe COVID-19. After scoring the metabolism-related biological processes and signaling pathways, we found that mono-CD14+ cells expressed higher levels of glycolysis-related genes (PKM, LDHA and PKM) and PPP-related genes (PGD and TKT) in severe patients than in mild patients. These genes may contribute to the hyperinflammation in mono-CD14+ cells of patients with severe COVID-19. The mono-CD16+ cell population in COVID-19 patients showed reduced transcription levels of genes related to lysine degradation (NSD1, KMT2E, and SETD2) and elevated transcription levels of genes involved in OXPHOS (ATP6V1B2, ATP5A1, ATP5E, and ATP5B), which may inhibit M2-like polarization. Plasma cells also expressed higher levels of the OXPHOS gene ATP13A3 in COVID-19 patients, which was positively associated with antibody secretion and survival of PCs. Moreover, enhanced glycolysis or OXPHOS was positively associated with the differentiation of memory B cells into plasmablasts or plasma cells. This study comprehensively investigated the metabolic features of peripheral immune cells and revealed that metabolic changes exacerbated inflammation in monocytes and promoted antibody secretion and cell survival in PCs in COVID-19 patients, especially those with severe disease.

GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Yun-Ching Chen ◽  
Abhilash Suresh ◽  
Chingiz Underbayev ◽  
Clare Sun ◽  
Komudi Singh ◽  
...  

AbstractBackgroundIn single-cell RNA-sequencing analysis, clustering cells into groups and differentiating cell groups by differentially expressed (DE) genes are 2 separate steps for investigating cell identity. However, the ability to differentiate between cell groups could be affected by clustering. This interdependency often creates a bottleneck in the analysis pipeline, requiring researchers to repeat these 2 steps multiple times by setting different clustering parameters to identify a set of cell groups that are more differentiated and biologically relevant.FindingsTo accelerate this process, we have developed IKAP—an algorithm to identify major cell groups and improve differentiating cell groups by systematically tuning parameters for clustering. We demonstrate that, with default parameters, IKAP successfully identifies major cell types such as T cells, B cells, natural killer cells, and monocytes in 2 peripheral blood mononuclear cell datasets and recovers major cell types in a previously published mouse cortex dataset. These major cell groups identified by IKAP present more distinguishing DE genes compared with cell groups generated by different combinations of clustering parameters. We further show that cell subtypes can be identified by recursively applying IKAP within identified major cell types, thereby delineating cell identities in a multi-layered ontology.ConclusionsBy tuning the clustering parameters to identify major cell groups, IKAP greatly improves the automation of single-cell RNA-sequencing analysis to produce distinguishing DE genes and refine cell ontology using single-cell RNA-sequencing data.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12570
Author(s):  
Yunqing Liu ◽  
Na Lu ◽  
Changwei Bi ◽  
Tingyu Han ◽  
Guo Zhuojun ◽  
...  

Background One goal of expression data analysis is to discover the biological significance or function of genes that are differentially expressed. Gene Set Enrichment (GSE) analysis is one of the main tools for function mining that has been widely used. However, every gene expressed in a cell is valuable information for GSE for single-cell RNA sequencing (scRNA-SEQ) data and not should be discarded. Methods We developed the functional expression matrix (FEM) algorithm to utilize the information from all expressed genes. The algorithm converts the gene expression matrix (GEM) into a FEM. The FEM algorithm can provide insight on the biological significance of a single cell. It can also integrate with GEM for downstream analysis. Results We found that FEM performed well with cell clustering and cell-type specific function annotation in three datasets (peripheral blood mononuclear cells, human liver, and human pancreas).


Author(s):  
Rui-Qi Wang ◽  
Wei Zhao ◽  
Hai-Kui Yang ◽  
Jia-Mei Dong ◽  
Wei-Jie Lin ◽  
...  

Colorectal cancer (CRC) manifests as gastrointestinal tumors with high intratumoral heterogeneity. Recent studies have demonstrated that CRC may consist of tumor cells with different consensus molecular subtypes (CMS). The advancements in single-cell RNA sequencing have facilitated the development of gene regulatory networks to decode key regulators for specific cell types. Herein, we comprehensively analyzed the CMS of CRC patients by using single-cell RNA-sequencing data. CMS for all malignant cells were assigned using CMScaller. Gene set variation analysis showed pathway activity differences consistent with those reported in previous studies. Cell–cell communication analysis confirmed that CMS1 was more closely related to immune cells, and that monocytes and macrophages play dominant roles in the CRC tumor microenvironment. On the basis of the constructed gene regulation networks (GRNs) for each subtype, we identified that the critical transcription factor ERG is universally activated and upregulated in all CMS in comparison with normal cells, and that it performed diverse roles by regulating the expression of different downstream genes. In summary, molecular subtyping of single-cell RNA-sequencing data for colorectal cancer could elucidate the heterogeneity in gene regulatory networks and identify critical regulators of CRC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii110-ii110
Author(s):  
Christina Jackson ◽  
Christopher Cherry ◽  
Sadhana Bom ◽  
Hao Zhang ◽  
John Choi ◽  
...  

Abstract BACKGROUND Glioma associated myeloid cells (GAMs) can be induced to adopt an immunosuppressive phenotype that can lead to inhibition of anti-tumor responses in glioblastoma (GBM). Understanding the composition and phenotypes of GAMs is essential to modulating the myeloid compartment as a therapeutic adjunct to improve anti-tumor immune response. METHODS We performed single-cell RNA-sequencing (sc-RNAseq) of 435,400 myeloid and tumor cells to identify transcriptomic and phenotypic differences in GAMs across glioma grades. We further correlated the heterogeneity of the GAM landscape with tumor cell transcriptomics to investigate interactions between GAMs and tumor cells. RESULTS sc-RNAseq revealed a diverse landscape of myeloid-lineage cells in gliomas with an increase in preponderance of bone marrow derived myeloid cells (BMDMs) with increasing tumor grade. We identified two populations of BMDMs unique to GBMs; Mac-1and Mac-2. Mac-1 demonstrates upregulation of immature myeloid gene signature and altered metabolic pathways. Mac-2 is characterized by expression of scavenger receptor MARCO. Pseudotime and RNA velocity analysis revealed the ability of Mac-1 to transition and differentiate to Mac-2 and other GAM subtypes. We further found that the presence of these two populations of BMDMs are associated with the presence of tumor cells with stem cell and mesenchymal features. Bulk RNA-sequencing data demonstrates that gene signatures of these populations are associated with worse survival in GBM. CONCLUSION We used sc-RNAseq to identify a novel population of immature BMDMs that is associated with higher glioma grades. This population exhibited altered metabolic pathways and stem-like potentials to differentiate into other GAM populations including GAMs with upregulation of immunosuppressive pathways. Our results elucidate unique interactions between BMDMs and GBM tumor cells that potentially drives GBM progression and the more aggressive mesenchymal subtype. Our discovery of these novel BMDMs have implications in new therapeutic targets in improving the efficacy of immune-based therapies in GBM.


2021 ◽  
Vol 12 (2) ◽  
pp. 317-334
Author(s):  
Omar Alaqeeli ◽  
Li Xing ◽  
Xuekui Zhang

Classification tree is a widely used machine learning method. It has multiple implementations as R packages; rpart, ctree, evtree, tree and C5.0. The details of these implementations are not the same, and hence their performances differ from one application to another. We are interested in their performance in the classification of cells using the single-cell RNA-Sequencing data. In this paper, we conducted a benchmark study using 22 Single-Cell RNA-sequencing data sets. Using cross-validation, we compare packages’ prediction performances based on their Precision, Recall, F1-score, Area Under the Curve (AUC). We also compared the Complexity and Run-time of these R packages. Our study shows that rpart and evtree have the best Precision; evtree is the best in Recall, F1-score and AUC; C5.0 prefers more complex trees; tree is consistently much faster than others, although its complexity is often higher than others.


Sign in / Sign up

Export Citation Format

Share Document