scholarly journals A conserved acidic cluster motif in SERINC5 confers resistance to antagonism by HIV-1 Nef

2019 ◽  
Author(s):  
Charlotte A. Stoneham ◽  
Peter W. Ramirez ◽  
Rajendra Singh ◽  
Marissa Suarez ◽  
Andrew Debray ◽  
...  

AbstractThe cellular protein SERINC5 inhibits the infectivity of diverse retroviruses and is counteracted by the glycoGag protein of MLV, the S2 protein of EIAV, and the Nef protein of HIV-1. Determining regions within SERINC5 that provide restrictive activity or Nef-sensitivity should inform mechanistic models of the SERINC5/HIV-1 relationship. Here, we report that deletion of the highly conserved sequence EDTEE, which is located within a cytoplasmic loop of SERINC5 and is reminiscent of an acidic cluster membrane trafficking signal, increases the sensitivity of SERINC5 to antagonism by Nef while having no effect on the intrinsic activity of the protein as an inhibitor of infectivity. The effects on infectivity correlated with enhanced removal of the ΔEDTEE mutant relative to wild type SERINC5 from the cell surface and with enhanced exclusion of the mutant protein from virions by Nef. Mutational analysis revealed that the acidic residues, but not the threonine, within the EDTEE motif are important for the relative resistance to Nef. Deletion of the EDTEE sequence did not increase the sensitivity of SERINC5 to antagonism by the glycoGag protein of MLV, suggesting that its virologic role is Nef-specific. These results are consistent with the reported mapping of the cytoplasmic loop that contains the EDTEE sequence as a general determinant of Nef-responsiveness, but they further indicate that sequences inhibitory to as well as supportive of Nef-activity reside in this region. We speculate that the EDTEE motif might have evolved to mediate resistance against retroviruses that use Nef-like proteins to antagonize SERINC5.ImportanceCellular membrane proteins in the SERINC family, especially SERINC5, inhibit the infectivity of retroviral virions. This inhibition is counteracted by retroviral proteins, specifically HIV-1 Nef, MLV glycoGag, and EIAV S2. One consequence of such a host-pathogen “arms race” is compensatory change in the host antiviral protein as it evolves to escape the effects of the viral antagonist. This is often reflected in a genetic signature, positive selection, which is conspicuously missing inSERINC5. Here we show that despite this lack of genetic evidence, a sequence in SERINC5 nonetheless provides relative resistance to antagonism by HIV-1 Nef.

2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Charlotte A. Stoneham ◽  
Peter W. Ramirez ◽  
Rajendra Singh ◽  
Marissa Suarez ◽  
Andrew Debray ◽  
...  

ABSTRACT The cellular protein SERINC5 inhibits the infectivity of diverse retroviruses, and its activity is counteracted by the glycosylated Gag (glycoGag) protein of murine leukemia virus (MLV), the S2 protein of equine infectious anemia virus (EIAV), and the Nef protein of human immunodeficiency virus type 1 (HIV-1). Determining the regions within SERINC5 that provide restrictive activity or Nef sensitivity should inform mechanistic models of the SERINC5/HIV-1 relationship. Here, we report that deletion of the conserved sequence EDTEE, which is located within a cytoplasmic loop of SERINC5 and which is reminiscent of an acidic-cluster membrane trafficking signal, increases the sensitivity of SERINC5 to antagonism by Nef, while it has no effect on the intrinsic activity of the protein as an inhibitor of infectivity. These effects correlated with enhanced removal of the ΔEDTEE mutant relative to that of wild-type SERINC5 from the cell surface and with enhanced exclusion of the mutant protein from virions by Nef. Mutational analysis indicated that the acidic residues, but not the threonine, within the EDTEE motif are important for the relative resistance to Nef. Deletion of the EDTEE sequence did not increase the sensitivity of SERINC5 to antagonism by the glycoGag protein of MLV, suggesting that its virologic role is Nef specific. These results are consistent with the reported mapping of the cytoplasmic loop that contains the EDTEE sequence as a general determinant of Nef responsiveness, but they further indicate that sequences inhibitory to as well as supportive of Nef activity reside in this region. We speculate that the EDTEE motif might have evolved to mediate resistance against retroviruses that use Nef-like proteins to antagonize SERINC5. IMPORTANCE Cellular membrane proteins in the SERINC family, especially SERINC5, inhibit the infectivity of retroviral virions. This inhibition is counteracted by retroviral proteins, specifically, HIV-1 Nef, MLV glycoGag, and EIAV S2. One consequence of such a host-pathogen “arms race” is a compensatory change in the host antiviral protein as it evolves to escape the effects of viral antagonists. This is often reflected in a genetic signature, positive selection, which is conspicuously missing in SERINC5. Here we show that despite this lack of genetic evidence, a sequence in SERINC5 nonetheless provides relative resistance to antagonism by HIV-1 Nef.


2021 ◽  
Author(s):  
Charlotte A. Stoneham ◽  
Simon Langer ◽  
Paul D. De Jesus ◽  
Jacob M. Wozniak ◽  
John Lapek ◽  
...  

AbstractThe HIV-1 accessory protein Vpu modulates membrane protein trafficking and degradation to provide evasion of immune surveillance. Targets of Vpu include CD4, HLAs, and BST-2. Several cellular pathways co-opted by Vpu have been identified, but the picture of Vpu’s itinerary and activities within membrane systems remains incomplete. Here, we used fusion proteins of Vpu and the enzyme ascorbate peroxidase (APEX2) to compare the ultrastructural locations and the proximal proteomes of wild type Vpu and Vpu-mutants. The proximity-omes of the proteins correlated with their ultrastructural locations and placed wild type Vpu near both retromer and ESCRT-0 complexes. Hierarchical clustering of protein abundances across the mutants was essential to interpreting the data and identified Vpu degradation-targets including CD4, HLA-C, and SEC12 as well as Vpu-cofactors including HGS, STAM, clathrin, and PTPN23, an ALIX-like protein. The Vpu-directed degradation of BST-2 required PTPN23 but not the retromer subunits. These data suggest that Vpu directs targets from sorting endosomes to degradation at multi-vesicular bodies via ESCRT-0 and PTPN23.Author SummaryVpu triggers the degradation or mis-localization of proteins important to the host’s immune response. Vpu acts as an adaptor, linking cellular protein targets to the ubiquitination and membrane trafficking machinery. Vpu has been localized to various cellular membrane systems. By fusing wild type Vpu and Vpu-mutants to the enzyme ascorbate peroxidase, we defined the cellular proteome in proximity to Vpu and correlated this with the protein’s location. We found that wild type Vpu is proximal to ESCRT proteins, retromer complexes, and sorting and late endosomal proteins. Functionally, we found that the Vpu-mediated degradation of the innate defense protein BST-2 required PTPN23, an ALIX-like protein, consistent with our observation of Vpu’s presence at the limiting membranes of multi-vesicular bodies.


Viruses ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 493
Author(s):  
Logan Van Nynatten ◽  
Aaron Johnson ◽  
Brennan Dirk ◽  
Emily Pawlak ◽  
Rajesh Jacob ◽  
...  

The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef, plays an essential role in disease progression and pathogenesis via hijacking the host cellular membrane-trafficking machinery. Interestingly, HIV-1 group-M subtypes display differences in the rate of disease progression. However, few reports investigated how the cellular behaviors and activities of Nef isolates from reference strains may differ between HIV-1 group-M subtypes. Here, we characterize how differing cellular distributions of Nef proteins across group-M subtypes may impact protein function using immunofluorescence microscopy and flow cytometric analysis. We demonstrate that Nef variants isolated from HIV-1 group-M subtypes display differences in expression, with low expressing Nef proteins from reference strains of subtypes G (F1.93.HH8793) and H (BE.93.VI997) also displaying decreased functionality. Additionally, we demonstrate variations in the subcellular distribution and localization of these Nef proteins. Nef from subtype G (F1.93.HH8793) and H (BE.93.VI997) reference strains also failed to colocalize with the trans-Golgi network, and were not differentially localized to cellular markers of multivesicular bodies or lysosomes. Strikingly, our results demonstrate that HIV-1 Nef proteins from reference strains G (F1.93.HH8793) and H (BE.93.VI997) highly colocalize with labeled mitochondrial compartments.


FEBS Letters ◽  
1991 ◽  
Vol 282 (2) ◽  
pp. 231-234 ◽  
Author(s):  
Denise M. Lowe ◽  
Vanita Parmar ◽  
Sharon D. Kemp ◽  
Brendan A. Larder

2011 ◽  
Vol 22 (8) ◽  
pp. 1148-1166 ◽  
Author(s):  
Laura García-Expósito ◽  
Jonathan Barroso-González ◽  
Isabel Puigdomènech ◽  
José-David Machado ◽  
Julià Blanco ◽  
...  

As the initial barrier to viral entry, the plasma membrane along with the membrane trafficking machinery and cytoskeleton are of fundamental importance in the viral cycle. However, little is known about the contribution of plasma membrane dynamics during early human immunodeficiency virus type 1 (HIV-1) infection. Considering that ADP ribosylation factor 6 (Arf6) regulates cellular invasion via several microorganisms by coordinating membrane trafficking, our aim was to study the function of Arf6-mediated membrane dynamics on HIV-1 entry and infection of T lymphocytes. We observed that an alteration of the Arf6–guanosine 5′-diphosphate/guanosine 5′-triphosphate (GTP/GDP) cycle, by GDP-bound or GTP-bound inactive mutants or by specific Arf6 silencing, inhibited HIV-1 envelope–induced membrane fusion, entry, and infection of T lymphocytes and permissive cells, regardless of viral tropism. Furthermore, cell-to-cell HIV-1 transmission of primary human CD4+T lymphocytes was inhibited by Arf6 knockdown. Total internal reflection fluorescence microscopy showed that Arf6 mutants provoked the accumulation of phosphatidylinositol-(4,5)-biphosphate–associated structures on the plasma membrane of permissive cells, without affecting CD4-viral attachment but impeding CD4-dependent HIV-1 entry. Arf6 silencing or its mutants did not affect fusion, entry, and infection of vesicular stomatitis virus G–pseudotyped viruses or ligand-induced CXCR4 or CCR5 endocytosis, both clathrin-dependent processes. Therefore we propose that efficient early HIV-1 infection of CD4+T lymphocytes requires Arf6-coordinated plasma membrane dynamics that promote viral fusion and entry.


1993 ◽  
Vol 13 (9) ◽  
pp. 5331-5347
Author(s):  
V Leathers ◽  
R Tanguay ◽  
M Kobayashi ◽  
D R Gallie

Both the 68-base 5' leader (omega) and the 205-base 3' untranslated region (UTR) of tobacco mosaic virus (TMV) promote efficient translation. A 35-base region within omega is necessary and sufficient for the regulation. Within the 3' UTR, a 52-base region, composed of two RNA pseudoknots, is required for regulation. These pseudoknots are phylogenetically conserved among seven viruses from two different viral groups and one satellite virus. The pseudoknots contained significant conservation at the secondary and tertiary levels and at several positions at the primary sequence level. Mutational analysis of the sequences determined that the primary sequence in several conserved positions, particularly within the third pseudoknot, was essential for function. The higher-order structure of the pseudoknots was also required. Both the leader and the pseudoknot region were specifically recognized by, and competed for, the same proteins in extracts made from carrot cell suspension cells and wheat germ. Binding of the proteins is much stronger to omega than the pseudoknot region. Synergism was observed between the TMV 3' UTR and the cap and to a lesser extent between omega and the 3' UTR. The functional synergism and the protein binding data suggest that the cap, TMV 5' leader, and 3' UTR interact to establish an efficient level of translation.


2006 ◽  
Vol 26 (22) ◽  
pp. 8385-8395 ◽  
Author(s):  
Patricija Hawle ◽  
Martin Siepmann ◽  
Anja Harst ◽  
Marco Siderius ◽  
H. Peter Reusch ◽  
...  

ABSTRACT The mechanism of client protein activation by Hsp90 is enigmatic, and it is uncertain whether Hsp90 employs a common route for all proteins. Using a mutational analysis approach, we investigated the activation of two types of client proteins, glucocorticoid receptor (GR) and the kinase v-Src by the middle domain of Hsp90 (Hsp90M) in vivo. Remarkably, the overall cellular activity of v-Src was highly elevated in a W300A mutant yeast strain due to a 10-fold increase in cellular protein levels of the kinase. In contrast, the cellular activity of GR remained almost unaffected by the W300A mutation but was dramatically sensitive to S485Y and T525I exchanges. In addition, we show that mutations S485Y and T525I in Hsp90M reduce the ATP hydrolysis rate, suggesting that Hsp90 ATPase is more tightly regulated than assumed previously. Therefore, the activation of GR and v-Src has various demands on Hsp90 biochemistry and is dependent on separate functional regions of Hsp90M. Thus, Hsp90M seems to discriminate between different substrate types and to adjust the molecular chaperone for proper substrate activation.


2001 ◽  
Vol 75 (23) ◽  
pp. 11336-11343 ◽  
Author(s):  
Romi Ghose ◽  
Li-Ying Liou ◽  
Christine H. Herrmann ◽  
Andrew P. Rice

ABSTRACT Combinations of cytokines are known to reactivate transcription and replication of latent human immunodeficiency virus type 1 (HIV-1) proviruses in resting CD4+ T lymphocytes isolated from infected individuals. Transcription of the HIV-1 provirus by RNA polymerase II is strongly stimulated by the viral Tat protein. Tat function is mediated by a cellular protein kinase known as TAK (cyclin T1/P-TEFb) that is composed of Cdk9 and cyclin T1. We have found that treatment of peripheral blood lymphocytes and purified resting CD4+ T lymphocytes with the combination of interleukin-2 (IL-2), IL-6, and tumor necrosis factor alpha resulted in an increase in Cdk9 and cyclin T1 protein levels and an increase in TAK enzymatic activity. The cytokine induction of TAK in resting CD4+ T lymphocytes did not appear to require proliferation of lymphocytes. These results suggest that induction of TAK by cytokines secreted in the microenvironment of lymphoid tissue may be involved in the reactivation of HIV-1 in CD4+ T lymphocytes harboring a latent provirus.


Sign in / Sign up

Export Citation Format

Share Document