scholarly journals Fingerprinting CANDO: Increased Accuracy with Structure and Ligand Based Shotgun Drug Repurposing

2019 ◽  
Author(s):  
James Schuler ◽  
Ram Samudrala

We have upgraded our Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun drug repurposing to include ligand-based, data fusion, and decision tree pipelines. The first version of CANDO implemented a structure-based pipeline that modeled interactions between compounds and proteins on a large scale, generating compoundproteome interaction signatures used to infer similarity of drug behavior; the new pipelines accomplish this by incorporating molecular fingerprints and the Tanimoto coefficient. We obtain improved benchmarking performance with the new pipelines across all three evaluation metrics used: average indication accuracy, pairwise accuracy, and coverage. The best performing pipeline achieves an average indication accuracy of 19.0% at the top10 cutoff, compared to 11.7% for v1, and 2.2% for a random control. Our results demonstrate that the CANDO drug recovery accuracy is substantially improved by integrating multiple pipelines, thereby enhancing our ability to generate putative therapeutic repurposing candidates, and increasing drug discovery efficiency.

2020 ◽  
Author(s):  
William Mangione ◽  
Zackary Falls ◽  
Thomas Melendy ◽  
Gaurav Chopra ◽  
Ram Samudrala

In this manuscript we highlight consensus between the list of drugs currently in clinical trials to treat COVID-19, the worldwide pandemic caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), and the list of predictions made using our shotgun drug discovery, repurposing, and design platform known as CANDO (Computational Analysis of Novel Drug Opportunities). We make the argument that increased funding and development for drug repurposing biotechnology like ours will help combat the inevitable pathogenic outbreaks of the future. <br>


2020 ◽  
Author(s):  
James Schuler ◽  
Zackary Falls ◽  
William Mangione ◽  
Matthew L. Hudson ◽  
Liana Bruggemann ◽  
...  

AbstractDrug repurposing technologies are growing in number and maturing. However, comparison to each other and to reality is hindered due to lack of consensus with respect to performance evaluation. Such comparability is necessary to determine scientific merit and to ensure that only meaningful predictions from repurposing technologies carry through to further validation and eventual patient use. Here, we review and compare performance evaluation measures for these technologies using version 2 of our shotgun repurposing Computational Analysis of Novel Drug Opportunities (CANDO) platform to illustrate their benefits, drawbacks, and limitations. Understanding and using different performance evaluation metrics ensures robust cross platform comparability, enabling us to continuously strive towards optimal repurposing by decreasing time and cost of drug discovery and development.


Author(s):  
William Mangione ◽  
Zackary Falls ◽  
Thomas Melendy ◽  
Gaurav Chopra ◽  
Ram Samudrala

In this manuscript we highlight consensus between the list of drugs currently in clinical trials to treat COVID-19, the worldwide pandemic caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), and the list of predictions made using our shotgun drug discovery, repurposing, and design platform known as CANDO (Computational Analysis of Novel Drug Opportunities). We make the argument that increased funding and development for drug repurposing biotechnology like ours will help combat the inevitable pathogenic outbreaks of the future. <br>


2020 ◽  
Author(s):  
William Mangione ◽  
Zackary Falls ◽  
Thomas Melendy ◽  
Gaurav Chopra ◽  
Ram Samudrala

In this manuscript we highlight consensus between the list of drugs currently in clinical trials to treat COVID-19, the worldwide pandemic caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), and the list of predictions made using our shotgun drug discovery, repurposing, and design platform known as CANDO (Computational Analysis of Novel Drug Opportunities). We make the argument that increased funding and development for drug repurposing biotechnology like ours will help combat the inevitable pathogenic outbreaks of the future. <br>


2018 ◽  
Author(s):  
William Mangione ◽  
Ram Samudrala

AbstractDrug repurposing is a valuable tool for combating the slowing rates of novel therapeutic discovery. The Computational Analysis of Novel Drug Opportunities (CANDO) platform performs shotgun repurposing of 3,733 drugs/compounds that map to 2,030 indications/diseases by predicting their interactions with 46,784 protein structures and relating them via proteomic interaction signatures. The accuracy of the CANDO platform is evaluated using our benchmarking protocol that assesses indication accuracies based on whether or not pairs of drugs associated with the same indication can be captured within a certain cutoff, which is a measure of the drug repurposing recovery rate. To identify subsets of proteins that exhibit the same therapeutic effectiveness as the full set, groups of 8 proteins were randomly selected and subsequently benchmarked 50 times. The resulting protein sets were ranked according to average indication accuracy, pairwise accuracy, and coverage (count of indications with non-zero accuracy). The best 50 subsets of 8 according to each metric were progressively combined into supersets after each iteration and benchmarked. These supersets yield up to 14% improvement in benchmarking accuracy, and represent a 100-1,000 fold reduction in the number of proteins relative to the full set. Protein supersets optimized using independent compound libraries derived from the full library were cross-tested and were shown to reproduce the performance relative to using all 46,784 proteins, indicating that these reduced size supersets are broadly applicable for characterizing drug behavior. Further analysis revealed that sets comprised of proteins with more equitably diverse ligand interactions are important for describing drug behavior. Our work elucidates the role of particular protein subsets and corresponding ligand interactions that play a role in computational drug repurposing, and paves the way for the use of machine learning approaches to further improve the accuracy of the CANDO platform and its repurposing potential.Author summaryDrug repurposing is a valuable approach for ameliorating the current problems plaguing drug discovery. We introduce a novel protein subset analysis pipeline that allows us to elucidate features important for drug repurposing accuracies using the Computational Analysis of Novel Drug Opportunities (CANDO) platform. Our platform relates drugs based on the similarity of their interactions with a diverse library of proteins. We subjected all proteins in the platform to a splitting and ranking protocol that ranked protein subsets based on their benchmarking performance. Further analysis of the best performing protein subsets revealed that the most useful proteins for describing how small molecule compounds behave in biological systems are those that are predicted to interact with a structurally diverse range of ligands. We hypothesize that this is a consequence of the multitarget nature of drugs and, conversely, the implied promiscuity of proteins in biological systems. These results may be used to make drug discovery more accurate and efficient by alleviating some of its bottlenecks, bringing us one step further in better understanding how drugs behave in the context of their environments.


2020 ◽  
Vol 13 (11) ◽  
pp. dmm044040 ◽  
Author(s):  
Katie Lloyd ◽  
Stamatia Papoutsopoulou ◽  
Emily Smith ◽  
Philip Stegmaier ◽  
Francois Bergey ◽  
...  

ABSTRACTInflammatory bowel diseases (IBDs) cause significant morbidity and mortality. Aberrant NF-κB signalling is strongly associated with these conditions, and several established drugs influence the NF-κB signalling network to exert their effect. This study aimed to identify drugs that alter NF-κB signalling and could be repositioned for use in IBD. The SysmedIBD Consortium established a novel drug-repurposing pipeline based on a combination of in silico drug discovery and biological assays targeted at demonstrating an impact on NF-κB signalling, and a murine model of IBD. The drug discovery algorithm identified several drugs already established in IBD, including corticosteroids. The highest-ranked drug was the macrolide antibiotic clarithromycin, which has previously been reported to have anti-inflammatory effects in aseptic conditions. The effects of clarithromycin effects were validated in several experiments: it influenced NF-κB-mediated transcription in murine peritoneal macrophages and intestinal enteroids; it suppressed NF-κB protein shuttling in murine reporter enteroids; it suppressed NF-κB (p65) DNA binding in the small intestine of mice exposed to lipopolysaccharide; and it reduced the severity of dextran sulphate sodium-induced colitis in C57BL/6 mice. Clarithromycin also suppressed NF-κB (p65) nuclear translocation in human intestinal enteroids. These findings demonstrate that in silico drug repositioning algorithms can viably be allied to laboratory validation assays in the context of IBD, and that further clinical assessment of clarithromycin in the management of IBD is required.This article has an associated First Person interview with the joint first authors of the paper.


2020 ◽  
Author(s):  
Matthew L. Hudson ◽  
Ram Samudrala

AbstractDrug repurposing, the practice of utilizing existing drugs for novel clinical indications, has tremendous potential for improving human health outcomes and increasing therapeutic development efficiency. The goal of multidisease multitarget drug repurposing, also known as shotgun drug repurposing, is to develop platforms that assess the therapeutic potential of each existing drug for every clinical indication. Our Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun multitarget repurposing implements several pipelines via large scale modelling and simulation of interactions between comprehensive libraries of drugs/compounds and protein structures. In these pipelines, each drug is described by an interaction signature that is then compared to all other signatures that are then sorted and ranked based on similarity. Pipelines within the platform are benchmarked based on their ability to recover known drugs for all indications in our library, and predictions are generated based on the hypothesis that (novel) drugs with similar signatures may be repurposed for the same indication(s). The drug-protein interactions in the platform used to create the drug-proteome signatures may be determined by any screening or docking method but the primary approach used thus far has been an in house similarity docking protocol. In this study, we calculated drug-proteome interaction signatures using the publicly available molecular docking method Autodock Vina and created hybrid decision tree pipelines that combined our original bio- and cheminformatic approach with the goal of assessing and benchmarking their drug repurposing capabilities and performance. The hybrid decision tree pipeline outperformed the corresponding two docking-based pipelines it was synthesized from, yielding an average indication accuracy of 13.3% at the top10 cutoff (the most stringent), relative to 10.9% and 7.1% for its constituent pipelines, and a random control accuracy of 2.2%. We demonstrate that docking based virtual screening pipelines have unique performance characteristics and that the CANDO shotgun repurposing paradigm is not dependent on a specific docking method. Our results also provide further evidence that multiple CANDO pipelines can be synthesized to enhance drug repurposing predictive capability relative to their constituent pipelines. Overall, this study indicates that pipelines consisting of varied docking based signature generation methods can capture unique and useful signal for accurate comparison of drug-proteome interaction signatures, leading to improvements in the benchmarking and predictive performance of the CANDO shotgun drug repurposing platform.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anastasiya Belyaeva ◽  
Louis Cammarata ◽  
Adityanarayanan Radhakrishnan ◽  
Chandler Squires ◽  
Karren Dai Yang ◽  
...  

AbstractGiven the severity of the SARS-CoV-2 pandemic, a major challenge is to rapidly repurpose existing approved drugs for clinical interventions. While a number of data-driven and experimental approaches have been suggested in the context of drug repurposing, a platform that systematically integrates available transcriptomic, proteomic and structural data is missing. More importantly, given that SARS-CoV-2 pathogenicity is highly age-dependent, it is critical to integrate aging signatures into drug discovery platforms. We here take advantage of large-scale transcriptional drug screens combined with RNA-seq data of the lung epithelium with SARS-CoV-2 infection as well as the aging lung. To identify robust druggable protein targets, we propose a principled causal framework that makes use of multiple data modalities. Our analysis highlights the importance of serine/threonine and tyrosine kinases as potential targets that intersect the SARS-CoV-2 and aging pathways. By integrating transcriptomic, proteomic and structural data that is available for many diseases, our drug discovery platform is broadly applicable. Rigorous in vitro experiments as well as clinical trials are needed to validate the identified candidate drugs.


Author(s):  
Max Lam ◽  
Chia-Yen Chen ◽  
Tian Ge ◽  
Yan Xia ◽  
David W. Hill ◽  
...  

AbstractBroad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify “druggable” targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing.


2020 ◽  
Author(s):  
Jasper Kyle Catapang ◽  
Junie B. Billones

SARS-CoV-2 has no known vaccine nor any effective treatment that has been released for clinical trials yet. This has ultimately paved the way for novel drug discovery approaches since although there are multiple efforts focused on drug repurposing of clinically-approved drugs for SARS-CoV-2, it is also worth considering that these existing drugs can be surpassed in effectivity by novel ones. This research focuses on the generation of novel candidate inhibitors via constrained graph variational autoencoders and the calculation of their Tanimoto similarities against existing drugs---repurposing these existing drugs and considering the novel ligands as possible SARS-CoV-2 main protease inhibitors and ACE2 receptor blockers by docking them through PyRx and ranking these ligands.


Sign in / Sign up

Export Citation Format

Share Document