scholarly journals dSreg: A bayesian model to integrate changes in splicing and RNA binding protein activity

2019 ◽  
Author(s):  
Carlos Martí-Gómez ◽  
Enrique Lara-Pezzi ◽  
Fátima Sánchez-Cabo

Alternative splicing (AS) is an important mechanism in the generation of transcript diversity across mammals. AS patterns are dynamically regulated during development and in response to environmental changes. Defects or perturbations in its regulation may lead to cancer or neurological disorders, among other pathological conditions. The regulatory mechanisms controlling AS in a given biological context are typically inferred using a two step-framework: differential AS analysis followed by enrichment methods. These strategies require setting rather arbitrary thresholds and are prone to error propagation along the analysis. To overcome these limitations, we propose dSreg, a Bayesian model that integrates RNAseq with data from regulatory features, e.g. binding sites of RNA binding proteins (RBPs). dSreg identifies the key underlying regulators controlling AS changes and quantifies their activity while simultaneously estimating the changes in exon inclusion rates. dSreg increased both the sensitivity and the specificity of the identified alternative splicing changes in simulated data, even at low read coverage. dSreg also showed improved performance when analyzing a collection of knock-down RBPs experiments from ENCODE, as opposed to traditional enrichment methods such as Over-representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA). dSreg opens the possibility to integrate a large amount of readily available RNA-seq datasets at low coverage for AS analysis and allows more cost-effective RNA-seq experiments. dSreg was implemented in python using stan and is freely available to the community at https://bitbucket.org/cmartiga/dsreg.

2019 ◽  
Vol 36 (7) ◽  
pp. 2134-2141
Author(s):  
Carlos Martí-Gómez ◽  
Enrique Lara-Pezzi ◽  
Fátima Sánchez-Cabo

Abstract Motivation Alternative splicing (AS) is an important mechanism in the generation of transcript diversity across mammals. AS patterns are dynamically regulated during development and in response to environmental changes. Defects or perturbations in its regulation may lead to cancer or neurological disorders, among other pathological conditions. The regulatory mechanisms controlling AS in a given biological context are typically inferred using a two-step framework: differential AS analysis followed by enrichment methods. These strategies require setting rather arbitrary thresholds and are prone to error propagation along the analysis. Results To overcome these limitations, we propose dSreg, a Bayesian model that integrates RNA-seq with data from regulatory features, e.g. binding sites of RNA-binding proteins. dSreg identifies the key underlying regulators controlling AS changes and quantifies their activity while simultaneously estimating the changes in exon inclusion rates. dSreg increased both the sensitivity and the specificity of the identified AS changes in simulated data, even at low read coverage. dSreg also showed improved performance when analyzing a collection of knock-down RNA-binding proteins’ experiments from ENCODE, as opposed to traditional enrichment methods, such as over-representation analysis and gene set enrichment analysis. dSreg opens the possibility to integrate a large amount of readily available RNA-seq datasets at low coverage for AS analysis and allows more cost-effective RNA-seq experiments. Availability and implementation dSreg was implemented in python using stan and is freely available to the community at https://bitbucket.org/cmartiga/dsreg. Supplementary information Supplementary data are available at Bioinformatics online.


2005 ◽  
Vol 25 (14) ◽  
pp. 6267-6278 ◽  
Author(s):  
Andrea N. Ladd ◽  
George Taffet ◽  
Craig Hartley ◽  
Debra L. Kearney ◽  
Thomas A. Cooper

ABSTRACT Members of the CELF family of RNA binding proteins have been implicated in alternative splicing regulation in developing heart. Transgenic mice that express a nuclear dominant-negative CELF protein specifically in the heart (MHC-CELFΔ) develop cardiac hypertrophy and dilated cardiomyopathy with defects in alternative splicing beginning as early as 3 weeks after birth. MHC-CELFΔ mice exhibit extensive cardiac fibrosis, severe cardiac dysfunction, and premature death. Interestingly, the penetrance of the phenotype is greater in females than in males despite similar levels of dominant-negative expression, suggesting that there is sex-specific modulation of splicing activity. The cardiac defects in MHC-CELFΔ mice are directly attributable to reduced levels of CELF activity, as crossing these mice with mice overexpressing CUG-BP1, a wild-type CELF protein, rescues defects in alternative splicing, the severity and incidence of cardiac hypertrophy, and survival. We conclude that CELF protein activity is required for normal alternative splicing in the heart in vivo and that normal CELF-mediated alternative splicing regulation is in turn required for normal cardiac function.


2020 ◽  
Author(s):  
Yuanyuan Wang ◽  
Rene F Chun ◽  
Samir Adhikari ◽  
Christopher M Lopez ◽  
Mason Henrich ◽  
...  

AbstractNearly all human multi-exonic genes undergo alternative splicing (AS) via regulation by RNA-binding proteins (RBPs), but few studies have examined the temporal dynamics of AS and its regulation during cell differentiation in the bone niche. We sought to evaluate how AS, under the control of RBPs, affects cell fate commitment during induced osteogenic differentiation of human bone marrow-derived multipotent stem/stromal progenitor cells (MSPCs). We generated a time-course RNA sequencing (RNA-seq) dataset representative of induced MSPC differentiation to osteoblasts. Our analysis revealed widespread AS changes, coordinated with differential RBP expression, at multiple time points, including many AS changes in non-differentially expressed genes. We also developed a computational approach to profile the dynamics and regulation of AS by RBPs using time-course RNA-seq data, by combining temporal patterns of exon skipping and RBP expression with RBP binding sites in the vicinity of regulated exons. In total we identified nine RBPs as potential key splicing regulators during MSPC osteogenic differentiation. Perturbation of one candidate, KHDRBS3, inhibited osteogenesis and bone formation in vitro, validating our computational prediction of “driver” RBPs. Overall, our work highlights a high degree of complexity in the splicing regulation of MSPC osteogenic differentiation. Our computational approach may be applied to other time-course data to explore dynamic AS changes and associated regulatory mechanisms in other biological processes or disease trajectories.


2021 ◽  
pp. 1-6
Author(s):  
Miriam C. Aziz ◽  
Patricia N. Schneider ◽  
Gemma L. Carvill

Developmental and epileptic encephalopathies (DEEs) describe a subset of neurodevelopmental disorders categorized by refractory epilepsy that is often associated with intellectual disability and autism spectrum disorder. The majority of DEEs are now known to have a genetic basis with de novo coding variants accounting for the majority of cases. More recently, a small number of individuals have been identified with intronic <i>SCN1A</i> variants that result in alternative splicing events that lead to ectopic inclusion of poison exons (PEs). PEs are short highly conserved exons that contain a premature truncation codon, and when spliced into the transcript, lead to premature truncation and subsequent degradation by nonsense-mediated decay. The reason for the inclusion/exclusion of these PEs is not entirely clear, but research suggests an autoregulatory role in gene expression and protein abundance. This is seen in proteins such as RNA-binding proteins and serine/arginine-rich proteins. Recent studies have focused on targeting these PEs as a method for therapeutic intervention. Targeting PEs using antisense oligonucleotides (ASOs) has shown to be effective in modulating alternative splicing events by decreasing the amount of transcripts harboring PEs, thus increasing the abundance of full-length transcripts and thereby the amount of protein in haploinsufficient genes implicated in DEE. In the age of personalized medicine, cellular and animal models of the genetic epilepsies have become essential in developing and testing novel precision therapeutics, including PE-targeting ASOs in a subset of DEEs.


2018 ◽  
Author(s):  
Emad Bahrami-Samani ◽  
Yi Xing

AbstractGene expression is tightly regulated at the post-transcriptional level through splicing, transport, translation, and decay. RNA-binding proteins (RBPs) play key roles in post-transcriptional gene regulation, and genetic variants that alter RBP-RNA interactions can affect gene products and functions. We developed a computational method ASPRIN (Allele-Specific Protein-RNA Interaction), that uses a joint analysis of CLIP-seq (cross-linking and immunoprecipitation followed by high-throughput sequencing) and RNA-seq data to identify genetic variants that alter RBP-RNA interactions by directly observing the allelic preference of RBP from CLIP-seq experiments as compared to RNA-seq. We used ASPRIN to systematically analyze CLIP-seq and RNA-seq data for 166 RBPs in two ENCODE (Encyclopedia of DNA Elements) cell lines. ASPRIN identified genetic variants that alter RBP-RNA interactions by modifying RBP binding motifs within RNA. Moreover, through an integrative ASPRIN analysis with population-scale RNA-seq data, we showed that ASPRIN can help reveal potential causal variants that affect alternative splicing via allele-specific protein-RNA interactions.


2022 ◽  
Vol 5 (4) ◽  
pp. e202101342
Author(s):  
Elena Nikonova ◽  
Amartya Mukherjee ◽  
Ketaki Kamble ◽  
Christiane Barz ◽  
Upendra Nongthomba ◽  
...  

Protein isoform transitions confer muscle fibers with distinct properties and are regulated by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to contribute to normal muscle development and physiology in vertebrates, although the detailed mechanisms remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila. Rbfox1 is differentially expressed among muscle fiber types, and RNAi knockdown causes a hypercontraction phenotype that leads to behavioral and eclosion defects. Misregulation of fiber type–specific gene and splice isoform expression, notably loss of an indirect flight muscle–specific isoform of Troponin-I that is critical for regulating myosin activity, leads to structural defects. We further show that Rbfox1 directly binds the 3′-UTR of target transcripts, regulates the expression level of myogenic transcription factors myocyte enhancer factor 2 and Salm, and both modulates expression of and genetically interacts with the CELF family RNA-binding protein Bruno1 (Bru1). Rbfox1 and Bru1 co-regulate fiber type–specific alternative splicing of structural genes, indicating that regulatory interactions between FOX and CELF family RNA-binding proteins are conserved in fly muscle. Rbfox1 thus affects muscle development by regulating fiber type–specific splicing and expression dynamics of identity genes and structural proteins.


2019 ◽  
Vol 316 (1) ◽  
pp. G197-G204 ◽  
Author(s):  
Louis R. Parham ◽  
Patrick A. Williams ◽  
Priya Chatterji ◽  
Kelly A. Whelan ◽  
Kathryn E. Hamilton

Intestinal epithelial cells are among the most rapidly proliferating cell types in the human body. There are several different subtypes of epithelial cells, each with unique functional roles in responding to the ever-changing environment. The epithelium’s ability for rapid and customized responses to environmental changes requires multitiered levels of gene regulation. An emerging paradigm in gastrointestinal epithelial cells is the regulation of functionally related mRNA families, or regulons, via RNA-binding proteins (RBPs). RBPs represent a rapid and efficient mechanism to regulate gene expression and cell function. In this review, we will provide an overview of intestinal epithelial RBPs and how they contribute specifically to intestinal epithelial stem cell dynamics. In addition, we will highlight key gaps in knowledge in the global understanding of RBPs in gastrointestinal physiology as an opportunity for future studies.


2016 ◽  
Vol 23 (5) ◽  
pp. 466-477 ◽  
Author(s):  
Enrique Lara-Pezzi ◽  
Manuel Desco ◽  
Alberto Gatto ◽  
María Victoria Gómez-Gaviro

The complexity of the mammalian brain requires highly specialized protein function and diversity. As neurons differentiate and the neuronal circuitry is established, several mRNAs undergo alternative splicing and other posttranscriptional changes that expand the variety of protein isoforms produced. Recent advances are beginning to shed light on the molecular mechanisms that regulate isoform switching during neurogenesis and the role played by specific RNA binding proteins in this process. Neurogenesis and neuronal wiring were recently shown to also be regulated by RNA degradation through nonsense-mediated decay. An additional layer of regulatory complexity in these biological processes is the interplay between alternative splicing and long noncoding RNAs. Dysregulation of posttranscriptional regulation results in defective neuronal differentiation and/or synaptic connections that lead to neurodevelopmental and psychiatric disorders.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Motoaki Yanaizu ◽  
Chika Washizu ◽  
Nobuyuki Nukina ◽  
Jun-ichi Satoh ◽  
Yoshihiro Kino

Abstract Genetic variations of TREM2 have been implicated as a risk factor of Alzheimer’s disease (AD). Recent studies suggest that the loss of TREM2 function compromises microglial responses to the accumulation of amyloid beta. Previously, we found that exon 3 of TREM2 is an alternative exon whose skipping leads to a reduction in full-length TREM2 protein by inducing nonsense-mediated mRNA decay. Here, we aimed to identify factors regulating TREM2 splicing. Using a panel of RNA-binding proteins, we found that exon 3 skipping of TREM2 was promoted by two paralogous proteins, CELF1 and CELF2, which were both linked previously with risk loci of AD. Although the overexpression of both CELF1 and CELF2 enhanced exon 3 skipping, only CELF2 reduced the expression of full-length TREM2 protein. Notably, the TREM2 ortholog in the green monkey, but not in the mouse, showed alternative splicing of exon 3 like human TREM2. Similarly, splicing regulation of exon 3 by CELF1/2 was found to be common to humans and monkeys. Using chimeric minigenes of human and mouse TREM2, we mapped a CELF-responsive sequence within intron 3 of human TREM2. Collectively, our results revealed a novel regulatory factor of TREM2 expression and highlighted a species-dependent difference of its regulation.


Sign in / Sign up

Export Citation Format

Share Document