scholarly journals An inexpensive remotely-operated video recording system for continuous behavioral observations

2019 ◽  
Author(s):  
W.David Weber ◽  
Heidi S. Fisher

AbstractVideo recording technology is an important tool for studies of animal behavior because it reduces observer effects and produces a record of experiments, interactions among subjects, and contextual information, however it remains cost prohibitive for many researchers. Here we present an inexpensive method for building a remotely-operated video recording system to continuously monitor behavioral or other biological experiments. Our system employs Raspberry Pi computers and cameras, open-source software, and allows for wireless networking, live-streaming, and the capacity to simultaneously record from several cameras in an array. To validate this system, we continuously monitored home-cage behavior of California mice (Peromyscus californicus) in a laboratory setting. We captured video in both low- and bright-light environments to record behaviors of this nocturnal species, and then quantified mating interactions of California mouse pairs by analyzing the videos with an open-source event logging software. This video recording platform offers users the flexibility to modify the specifications for a range of tasks and the scalability to make research more efficient and reliable to a larger population of scientists.

2021 ◽  
Author(s):  
Samuel W Centanni ◽  
Alexander CW Smith

With the recent development and rapidly accelerating adoption of machine-learning based rodent behavioral tracking tools such as DeepLabCut, one common variable that can impact the quality and consistency of results is the camera system. Many experimenters use webcams, GoPros, or other commercially available cameras that are not only relatively expensive, but offer very little flexibility over recording parameters. These cameras are not optimized for recording many types of behavioral experiments, which can lead to suboptimal video quality. Furthermore, it is a challenge, if not impossible, to synchronize multiple cameras with each other, or to send/receive a trigger with external signals such as a TTL pulse or a network connection. We have developed an affordable ecosystem of behavioral recording equipment, PiRATeMC (Pi-based Remote Acquisition Technology for Motion Capture), that relies on Raspberry Pi Camera Boards that are ideal for recording in both bright light, low light, and dark conditions under infrared light. PiRATeMC offers users control over nearly every recording parameter. This setup can easily be scaled up and synchronously controlled in clusters via a self-contained network to record a large number of simultaneous behavioral sessions without burdening institutional network infrastructure. Furthermore, the Raspberry Pi is an excellent platform for novice and inexperienced programmers interested in using an open-source recording system, with a large online community that is very active in developing novel open-source tools. Moreover, it easily interfaces with Arduinos and other microcontrollers, allowing simple synchronization and interfacing of video recording with nearly any behavioral equipment using GPIO pins to send or receive 3.3V or 5V signals, I2C, or serial communication.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5812
Author(s):  
Andres Henao ◽  
Philippe Apparicio ◽  
David Maignan

During the last decade, bicycles equipped with sensors became an essential tool for research, particularly for studies analyzing the lateral passing distance between motorized vehicles and bicycles. The objective of this article is to describe a low-cost open-source sensor called one metre plus (1m+) capable of measuring lateral passing distance, registering the geographical position of the cyclist, and video-recording the trip. The plans, codes, and schematic design are open and therefore easily accessible for the scientific community. This study describes in detail the conceptualization process, the characteristics of the device, and the materials from which they are made. The study also provides an evaluation of the product and describes the sensor’s functionalities and its field of application. The objective of this project is to democratize research and develop a platform/participative project that offers tools to researchers worldwide, in order to standardize knowledge sharing and facilitate the comparability of results in various contexts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soma Tomihara ◽  
Yoshitaka Oka ◽  
Shinji Kanda

AbstractBehavioral analysis plays an important role in wide variety of biological studies, but behavioral recordings often tend to be laborious and are associated with inevitable human-errors. It also takes much time to perform manual behavioral analyses while replaying the videos. On the other hand, presently available automated recording/analysis systems are often specialized for certain types of behavior of specific animals. Here, we established an open-source behavioral recording system using Raspberry Pi, which automatically performs video-recording and systematic file-sorting, and the behavioral recording can be performed more efficiently, without unintentional human operational errors. We also developed an Excel macro that enables us to easily perform behavioral annotation with simple manipulation. Thus, we succeeded in developing an analysis suite that mitigates human tasks and thus reduces human errors. By using this suite, we analyzed the sexual behavior of a laboratory and a wild medaka strain and found a difference in sexual motivation presumably resulting from domestication.


2019 ◽  
Vol 4 (2) ◽  
pp. 356-362
Author(s):  
Jennifer W. Means ◽  
Casey McCaffrey

Purpose The use of real-time recording technology for clinical instruction allows student clinicians to more easily collect data, self-reflect, and move toward independence as supervisors continue to provide continuation of supportive methods. This article discusses how the use of high-definition real-time recording, Bluetooth technology, and embedded annotation may enhance the supervisory process. It also reports results of graduate students' perception of the benefits and satisfaction with the types of technology used. Method Survey data were collected from graduate students about their use and perceived benefits of advanced technology to support supervision during their 1st clinical experience. Results Survey results indicate that students found the use of their video recordings useful for self-evaluation, data collection, and therapy preparation. The students also perceived an increase in self-confidence through the use of the Bluetooth headsets as their supervisors could provide guidance and encouragement without interrupting the flow of their therapy sessions by entering the room to redirect them. Conclusions The use of video recording technology can provide opportunities for students to review: videos of prospective clients they will be treating, their treatment videos for self-assessment purposes, and for additional data collection. Bluetooth technology provides immediate communication between the clinical educator and the student. Students reported that the result of that communication can improve their self-confidence, perceived performance, and subsequent shift toward independence.


2021 ◽  
Vol 11 (7) ◽  
pp. 3153
Author(s):  
Saifeddine Benhadhria ◽  
Mohamed Mansouri ◽  
Ameni Benkhlifa ◽  
Imed Gharbi ◽  
Nadhem Jlili

Multirotor drones are widely used currently in several areas of life. Their suitable size and the tasks that they can perform are their main advantages. However, to the best of our knowledge, they must be controlled via remote control to fly from one point to another, and they can only be used for a specific mission (tracking, searching, computing, and so on). In this paper, we intend to present an autonomous UAV based on Raspberry Pi and Android. Android offers a wide range of applications for direct use by the UAV depending on the context of the assigned mission. The applications cover a large number of areas such as object identification, facial recognition, and counting objects such as panels, people, and so on. In addition, the proposed UAV calculates optimal trajectories, provides autonomous navigation without external control, detects obstacles, and ensures live streaming during the mission. Experiments are carried out to test the above-mentioned criteria.


2021 ◽  
Vol 13 (15) ◽  
pp. 8182
Author(s):  
José María Portalo ◽  
Isaías González ◽  
Antonio José Calderón

Smart grids and smart microgrids (SMGs) require proper monitoring for their operation. To this end, measuring, data acquisition, and storage, as well as remote online visualization of real-time information, must be performed using suitable equipment. An experimental SMG is being deployed that combines photovoltaics and the energy carrier hydrogen through the interconnection of photovoltaic panels, electrolyser, fuel cell, and load around a voltage bus powered by a lithium battery. This paper presents a monitoring system based on open-source hardware and software for tracking the temperature of the photovoltaic generator in such an SMG. In fact, the increases in temperature in PV modules lead to a decrease in their efficiency, so this parameter needs to be measured in order to monitor and evaluate the operation. Specifically, the developed monitoring system consists of a network of digital temperature sensors connected to an Arduino microcontroller, which feeds the acquired data to a Raspberry Pi microcomputer. The latter is accessed by a cloud-enabled user/operator interface implemented in Grafana. The monitoring system is expounded and experimental results are reported to validate the proposal.


Author(s):  
Satoshi Koizumi ◽  
Masaaki Shojima ◽  
Shogo Dofuku ◽  
Akira Saito ◽  
Seiji Nomura ◽  
...  

1990 ◽  
Author(s):  
Kazuhiro Yoshihara ◽  
Ryuichi Katayama ◽  
Yutaka Yamanaka ◽  
Masaki Tsunekane ◽  
Yuzo Ono ◽  
...  

2014 ◽  
Vol 10 ◽  
pp. 641-652 ◽  
Author(s):  
Richard J Ingham ◽  
Claudio Battilocchio ◽  
Joel M Hawkins ◽  
Steven V Ley

Here we describe the use of a new open-source software package and a Raspberry Pi® computer for the simultaneous control of multiple flow chemistry devices and its application to a machine-assisted, multi-step flow preparation of pyrazine-2-carboxamide – a component of Rifater®, used in the treatment of tuberculosis – and its reduced derivative piperazine-2-carboxamide.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 702 ◽  
Author(s):  
Jin Hyun Cheong ◽  
Sawyer Brooks ◽  
Luke J. Chang

Advances in computer vision and machine learning algorithms have enabled researchers to extract facial expression data from face video recordings with greater ease and speed than standard manual coding methods, which has led to a dramatic increase in the pace of facial expression research. However, there are many limitations in recording facial expressions in laboratory settings.  Conventional video recording setups using webcams, tripod-mounted cameras, or pan-tilt-zoom cameras require making compromises between cost, reliability, and flexibility. As an alternative, we propose the use of a mobile head-mounted camera that can be easily constructed from our open-source instructions and blueprints at a fraction of the cost of conventional setups. The head-mounted camera framework is supported by the open source Python toolbox FaceSync, which provides an automated method for synchronizing videos. We provide four proof-of-concept studies demonstrating the benefits of this recording system in reliably measuring and analyzing facial expressions in diverse experimental setups, including group interaction experiments.


Sign in / Sign up

Export Citation Format

Share Document