scholarly journals Decoys and dilution: the impact of incompetent hosts on prevalence of Chagas disease

2019 ◽  
Author(s):  
Mondal Hasan Zahid ◽  
Christopher M. Kribs

AbstractBiodiversity is commonly believed to reduce risk of vector-borne zoonoses. However, researchers already showed that the effect of biodiversity on disease transmission is not that straightforward. This study focuses on the effect of biodiversity, specifically on the effect of the decoy process (additional hosts distracting vectors from their focal host), on reducing infections of vector-borne diseases in humans. Here, we consider the specific case of Chagas disease and use mathematical population models to observe the impact on human infection of the proximity of chickens, which are incompetent hosts for the parasite but serve as a preferred food source for vectors. We consider three cases as the distance between the two host populations varies: short (when farmers bring chickens inside the home to protect them from predators), intermediate (close enough for vectors with one host to detect the presence of the other host type), and far (separate enclosed buildings such as a home and hen-house). Our analysis shows that the presence of chickens reduces parasite prevalence in humans only at an intermediate distance under the condition that the vector birth rate from feeding on chickens is sufficiently low.

Author(s):  
Maha Bouzid

Waterborne diseases are caused by a multitude of pathogens and associated with a significant burden in both developed and developing countries. While the assessment of the adverse impacts of climate change on human heath from infectious diseases has mainly focused on vector-borne diseases, waterborne diseases prevalence and transmission patterns are also likely to be impacted by environmental change. This chapter will outline relevant waterborne pathogens, summarise the impact of climate change on disease transmission and explore climate change adaptation options in order to reduce the increased burden of waterborne diseases.


2017 ◽  
pp. 1041-1055
Author(s):  
Maha Bouzid

Waterborne diseases are caused by a multitude of pathogens and associated with a significant burden in both developed and developing countries. While the assessment of the adverse impacts of climate change on human heath from infectious diseases has mainly focused on vector-borne diseases, waterborne diseases prevalence and transmission patterns are also likely to be impacted by environmental change. This chapter will outline relevant waterborne pathogens, summarise the impact of climate change on disease transmission and explore climate change adaptation options in order to reduce the increased burden of waterborne diseases.


Author(s):  
Maha Bouzid

Waterborne diseases are caused by a multitude of pathogens and associated with a significant burden in both developed and developing countries. While the assessment of the adverse impacts of climate change on human heath from infectious diseases has mainly focused on vector-borne diseases, waterborne diseases prevalence and transmission patterns are also likely to be impacted by environmental change. This chapter will outline relevant waterborne pathogens, summarise the impact of climate change on disease transmission and explore climate change adaptation options in order to reduce the increased burden of waterborne diseases.


2019 ◽  
pp. 1201-1216
Author(s):  
Maha Bouzid

Waterborne diseases are caused by a multitude of pathogens and associated with a significant burden in both developed and developing countries. While the assessment of the adverse impacts of climate change on human heath from infectious diseases has mainly focused on vector-borne diseases, waterborne diseases prevalence and transmission patterns are also likely to be impacted by environmental change. This chapter will outline relevant waterborne pathogens, summarise the impact of climate change on disease transmission and explore climate change adaptation options in order to reduce the increased burden of waterborne diseases.


2020 ◽  
Author(s):  
Ganga Ram Phaijoo

Abstract Background: Malaria disease is transmitted by the bite of Anopheles mosquitoes. Plasmodium parasites are responsible for the disease. Due to human movement from one place to the other, vector borne diseases like malaria are spreading rapidly throughout the world. They have become major causes of morbidity and mortality worldwide. Changing temperature levels has significant impact on the life cycle, biting behavior and death rates of the mosquitoes which can transmit the disease.Methods: A multi patch SEIRS - SEI deterministic compartmental model for malaria disease is developed to study the disease transmission dynamics. The impact of temperature and human movement in transmission dynamics is investigated. Both global and local basic reproduction numbers are computed for two patches in two patch setting.Results: Disease free equilibrium is locally stable when the basic reproduction number is less than unity and unstable when the number is greater than unity. Numerical results show that the prevalence of the disease changes with the change in human movement rates between the patches; temperature affects the transmission dynamics of malaria disease.Conclusion: The burden of malaria disease can be reduced by managing the host movement between low and high disease prevalent patches. The optimal temperature for malaria disease transmission is 25 °C.


2009 ◽  
Vol 25 (suppl 1) ◽  
pp. S4-S4 ◽  
Author(s):  
Maria Glória Teixeira ◽  
Ana Boischio ◽  
Maria da Conceição N. Costa

Author(s):  
Sherifa Mostafa M. Sabra ◽  
Samar Ahamed

The search conducted on "The impact of global warming (GW) on the public health (PH) increasing the bacterial causing infectious diseases (IDs) performed by experiment: Vector-borne diseases (VBDs) insects, Taif, KSA", the experiment used ants (Taif Tapinoma sessile), prepared, arranged appropriate nests and adjusted the temperature at (20, 25, 30, 35, 40 and 45°C), for a week of each zone. It revealed the behaviour as (normal, semi-normal and ab-normal), the mean of mortality rates were between (0-53.3%). The bacterial contents measured by the turbidity indicated the presence of multiplication, were between (0.109-0.328). The bacterial growth degrees by sings were between (+ - +++++) and percent between (12-100%). Colony Forming Unit/ml (CFU/ml) confined between (1.8X102-15.0X102)/mL. Through this experiment it turned out the GW had a significant role on the PH, helped the proliferation of bacterial pathogens that caused IDS. The conclusion wiped from the experiment that the extent degrees of GW disadvantages on the PH. The PH workers must take the "Preventive Health Prophylaxis Measures" (PHPMs) to protect the individuals from IDs by eliminating the VBDs of various types, monitoring the immunological situation of individuals, provided the vaccinations of IDs and preparing for complete PHPMs against any changes in the PH.


2019 ◽  
Vol 11 (2) ◽  
pp. 131-138
Author(s):  
Risqa Novita

The era of globalization allows migration fastly, so we do not have boundary of a country. This led to an increase of the infectious diseases. Indonesia also have an impact on this globalization by highly migration. Indonesia is a tropical country and has diversity of vectors that can transmit various tropical diseases. One of a vector  which transmitted vector borne diseases is a bug Triatoma. Triatoma lives near the people’s house and in the bed. One of the species of Triatoma which found in indonesia is Triatoma rubrifasciata which is vector of Chagas disease and Leprosy and can cause allergic reaction of the skin after the bite. Triatoma infection in Southeast Asia, including in Indonesia has not been widely reported. This condition should make us to be alert on the disease emerging or re emerging diseases that can be caused by Triatoma . This article aims to study Triatoma as a vector of emerging and potentially re emerging diseases in Indonesia, which are Chagas, skin allergic reaction after bite and Leprosy. Methods. Literature review by look in google scholar and pubmed, by search using keywords: emerging parasitic, vector borne diseases, Triatoma in Southeast Asia. Inclusion criterias are research articles, laboratory research, case report, and systematic surveillance. Based on the literatures, tracing data that Indonesia has a chance to be  the cases of Chagas disease, Skin allergic reaction of Triatoma and Leprosy. It is supposed to made the vigilance on  make a early warning system, so our public health coud be achieved highest.


Author(s):  
Leila Khouaja ◽  
Slimane Ben Miled ◽  
Hassan Hbid

Epidemiology had an important development these last years allowing the resolution of a large number of problems and had good prediction on disease evolution. However, the transmission of several vector-borne diseases is closely connected to environmental protagonists, specially in the parasite-host interaction. Moreover, understanding the disease transmission is related to studying the ecology of all protagonists. These two levels of complexity(epidemiology and ecology) cannot be separated and have to be studied as a whole in a systematic way. Our goal is to understand the interaction of climate change on the evolution of a disease when the vector has ecological niche that depends on physiological state of development. We are particularly interested in tick vector diseases which are serious health problem affecting humans as well as domestic animals in many parts of the world. These infections are transmitted through a bite of an infected tick, and it appears that most of these infections are widely present in some wildlife species. L'épidémiologie a connu un développement important ces dernières années. Cette discipline a permis une meilleure compréhension del'évolution de maladies. Cependant, plusieurs maladies à transmission vectorielle sont étroitement liées aux protagonistes environnementaux. Ce constat est particulièrement vrai dans le contexte des interactions du parasite avec son hôte. De plus, comprendre la transmission de maladie est lié à l'étude de l'écologie de tous les protagonistes. Notre objectif est de comprendre l'influence du changement climatique sur l'évolution des maladies lorsque la niche écologique du vecteur dépend de l'état de développement physiologique de son hôte. Nous sommes particulièrement intéressés par les maladies vectorielles à tiques qui constituent un grave problème de santé touchant l'être humain et les animaux domestiques dans de nombreuses régions du monde. Ces infections sont généralement transmises par la piqûre d'une tique infectée et il apparaît que la plupart de ces infections sont largement présentées dans certaines espèces fauniques


2021 ◽  
pp. 26-31
Author(s):  
Cyril Caminade

Abstract This expert opinion provides an overview of mathematical models that have been used to assess the impact of climate change on ticks and tick-borne diseases, ways forward in terms of improving models for the recent context and broad guidelines for conducting future climate change risk assessment.


Sign in / Sign up

Export Citation Format

Share Document