scholarly journals Whole-genome fingerprint of the DNA methylome during chemically induced differentiation of the human AML cell line HL-60/S4

2019 ◽  
Author(s):  
Enoch Boasiako Antwi ◽  
Ada Olins ◽  
Vladimir B Teif ◽  
Matthias Bieg ◽  
Tobias Bauer ◽  
...  

AbstractBackgroundMyeloid differentiation gives rise to a plethora of immune cells in the human body. This differentiation leaves strong signatures in the epigenome through each differentiated state of genetically identical cells. The leukemic HL-60/S4 promyelocytic cell can be easily differentiated from its undifferentiated promyelocyte state into neutrophil-and macrophage-like cell states, making it an excellent system for studying myeloid differentiation. In this study, we present the underlying genome and epigenome architecture of HL-60/S4 through its undifferentiated and differentiated cell states.ResultsWe performed whole genome bisulphite sequencing of HL-60/S4 cells and their differentiated counterparts. With the support of karyotyping, we show that HL-60/S4 maintains a stable genome throughout differentiation. Analysis of differential CpG methylation reveals that most methylation changes occur in the macrophage-like state. Differential methylation of promoters was associated with immune related terms. Key immune genes, CEBPA, GFI1, MAFB and GATA1 showed differential expression and methylation. However, we observed strongest enrichment of methylation changes in enhancers and CTCF binding sites, implying that methylation plays a major role in large scale transcriptional reprogramming and chromatin reorganisation during differentiation. Correlation of differential expression and distal methylation with support from chromatin capture experiments allowed us to identify putative proximal and long-range enhancers for a number of immune cell differentiation genes, including CEBPA and CCNF. Integrating expression data, we present a model of HL-60/S4 differentiation in relation to the wider scope of myeloid differentiation.ConclusionsFor the first time, we elucidate the genome and CpG methylation landscape of HL-60/S4 during differentiation. We identify all differentially methylated regions and positions. We link these to immune function and to important factors in myeloid differentiation. We demonstrate that methylation plays a more significant role in modulating transcription via enhancer reprogramming, rather than by promoter regulation. We identify novel regulatory regions of key components in myeloid differentiation that are regulated by differential methylation. This study contributes another layer of “omics” characterisation of the HL-60/S4 cell line, making it an excellent model system for studying rapid in vitro cell differentiation.Summary statementEpigenomics plays a major role in cell identity and differentiation. We present the DNA methylation landscape of leukemic cells during in-vitro differentiation, to add another ‘omics layer to better understand the mechanisms behind differentiation.

Blood ◽  
1984 ◽  
Vol 64 (2) ◽  
pp. 534-541 ◽  
Author(s):  
H Nojiri ◽  
F Takaku ◽  
T Tetsuka ◽  
K Motoyoshi ◽  
Y Miura ◽  
...  

Abstract Changes of glycosphingolipids (GSLs) in the bipotential cell differentiation of human promyelocytic leukemia cell line HL-60 cells were investigated by high-performance thin-layer chromatography (HPTLC), with special reference to morphological and functional changes, such as phagocytosis and nitroblue tetrazolium (NBT) reduction. Nine molecular species of neutral GSLs and 13 or more species of sialo-GSLs, ie, gangliosides, were detected on the HPTLC chromatograms for untreated HL-60 cells. The major components were ceramide dihexoside (CDH), GM3, and sialo-paragloboside (SPG). When HL- 60 cells were induced to differentiate into both myeloid mature cells and macrophage-like cells in vitro, no new molecular species of GSLs specific for one of the cell differentiations was induced, but distinctive quantitative changes in the GSL composition were definitely observed between the two cell differentiations. During the myeloid differentiation induced by either dimethylsulfoxide (DMSO) or retinoic acid (RA), CDH, paragloboside (PG), and gangliosides having longer sugar moieties characteristically increased with a concomitant decrease of GSLs with shorter sugar chains, such as ceramide monohexoside (CMH) and GM3, and the GSL composition profile of myeloid differentiation- induced HL-60 cells became more similar to that of normal human granulocytes. However, some marked differences were noted between the induced HL-60 cells and the normal granulocytes, especially in the ganglioside compositions. These differences might reflect either some deficiency in the in vitro myeloid differentiation or some leukemic properties of HL-60 cells. In marked contrast to the change of GSL composition during myeloid differentiation, a remarkable increase of GM3, with a concurrent marked decrease of CDH, was observed in the process of cell differentiation into macrophage-like cells with 12-O- tetradecanoyl-phorbol-13-acetate (TPA), which suggested an increase in the biosynthesis of GM3. These results demonstrate that HL-60 cells express distinct GSL profiles, depending not only on maturation stages but also on differentiation directions.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-43
Author(s):  
Sapana S Jalnapurkar ◽  
Aishwarya Pawar ◽  
Patrick Somers ◽  
Gabrielle Ochoco ◽  
Subin S George ◽  
...  

Acute myeloid leukemia is caused by the accumulation of mutations in hematopoietic stem and myeloid progenitor cells, resulting in increased self-renewal, inhibition of differentiation, and aberrant proliferation. Although genomic studies have comprehensively identified genes that are mutated in acute leukemias, the functional roles of many of them, and the consequences of their mutations, remain poorly understood. PHF6 (PHD-finger protein 6) is an X-linked gene that is mutated in 3.2% of de novo AML, 4.7% CMML, 3% MDS, and 1.6% CML patients. Two-thirds of somatic mutations in PHF6 are frameshift and nonsense mutations distributed throughout the gene body, resulting in loss of PHF6 protein. One-third of the mutations are point mutations clustered in the ePHD2 (extended PHD) domain, and the consequence of these mutations on PHF6 function is unknown. The functional role of PHF6 and the mechanism by which PHF6 mutations accelerate AML has not yet been determined. In this study, we delineate the cellular and molecular function of PHF6 in AML using in vitro and in vivo models. In agreement with recently published reports, we found that pan-hematopoietic deletion of Phf6 using the Vav-Cre recombinase system gave competitive transplantation advantage to HSCs, with sustained multi-lineage reconstitution without exhaustion over three rounds of serial transplantations, demonstrating that Phf6 represses HSC self-renewal. However, loss of Phf6 alone was insufficient to cause hematopoietic malignancy in the mouse model when monitored for one year. To determine the function of PHF6 in AML progression, we transduced cKO (Vav-Cre; Phf6 flox) or WT (Vav-Cre only) bone marrow cells with MSCV retrovirus expressing HOXA9 (WT+HOXA9 and cKO+HOXA9), and transplanted into irradiated recipient mice. The resulting HOXA9-driven AML was greatly accelerated in the Phf6 cKO background, with recipient mice succumbing faster (median survival 119 days) as compared to recipients transduced with HOXA9-transduced WT cells (median survival >180 days, p=0.003) (Fig 1A). This was also reflected by an increase in the number of circulating immature leukemic cells in peripheral blood at earlier timepoints. HOXA9-transduced cKO cells showed higher serial replating ability in an in vitro colony forming assay as compared with HOXA9-transduced WT cells (Fig 1B). We further investigated the molecular function of PHF6 using the THP-1 human AML cell line. PHF6 is a chromatin-binding protein with two ePHD domains, and its binding partners and pattern of chromatin occupancy are unclear. Using ChIP-Seq, we identified that PHF6 occupies enhancers, and its peaks show striking alignment with the peaks of the key myeloid transcription factors (TFs) RUNX1, PU.1, and IRF8 (Fig 1C). To assess the effect of the clinically relevant point mutation R274Q (in the ePHD2 domain) on the transcriptional effects produced by PHF6, we first generated a PHF6 KO clone from the THP-1 cell line, and then re-expressed either WT PHF6 or R274Q-mutant PHF6 in this KO line. Re-expression of WT PHF6 rescued the extensive gene expression changes produced by its knockout, but R274Q-mutant PHF6 was unable to produce any gene expression changes, indicating that it is a "transcriptionally dead" mutant (Fig 1D). Gene Ontology analysis of transcriptome changes induced by WT PHF6 showed that PHF6 promotes the expression of myeloid differentiation gene sets. In summary, PHF6 restricts AML progression by binding enhancers with key myeloid TFs, and promoting the expression of myeloid differentiation genes. R274Q mutation renders PHF6 unable to exert any downstream expression changes, indicating that the ePHD2 domain (where R274 is located, clustered with other amino acids showing point mutations in hematopoietic malignancies) is critical for PHF6 function, and likely mediates important functional interactions with chromatin partners. Our future work will involve dissection of the sequence of molecular events governed by PHF6 following enhancer occupancy, and the role of PHF6 in repressing AML self-renewal and promoting differentiation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1984 ◽  
Vol 64 (2) ◽  
pp. 534-541 ◽  
Author(s):  
H Nojiri ◽  
F Takaku ◽  
T Tetsuka ◽  
K Motoyoshi ◽  
Y Miura ◽  
...  

Changes of glycosphingolipids (GSLs) in the bipotential cell differentiation of human promyelocytic leukemia cell line HL-60 cells were investigated by high-performance thin-layer chromatography (HPTLC), with special reference to morphological and functional changes, such as phagocytosis and nitroblue tetrazolium (NBT) reduction. Nine molecular species of neutral GSLs and 13 or more species of sialo-GSLs, ie, gangliosides, were detected on the HPTLC chromatograms for untreated HL-60 cells. The major components were ceramide dihexoside (CDH), GM3, and sialo-paragloboside (SPG). When HL- 60 cells were induced to differentiate into both myeloid mature cells and macrophage-like cells in vitro, no new molecular species of GSLs specific for one of the cell differentiations was induced, but distinctive quantitative changes in the GSL composition were definitely observed between the two cell differentiations. During the myeloid differentiation induced by either dimethylsulfoxide (DMSO) or retinoic acid (RA), CDH, paragloboside (PG), and gangliosides having longer sugar moieties characteristically increased with a concomitant decrease of GSLs with shorter sugar chains, such as ceramide monohexoside (CMH) and GM3, and the GSL composition profile of myeloid differentiation- induced HL-60 cells became more similar to that of normal human granulocytes. However, some marked differences were noted between the induced HL-60 cells and the normal granulocytes, especially in the ganglioside compositions. These differences might reflect either some deficiency in the in vitro myeloid differentiation or some leukemic properties of HL-60 cells. In marked contrast to the change of GSL composition during myeloid differentiation, a remarkable increase of GM3, with a concurrent marked decrease of CDH, was observed in the process of cell differentiation into macrophage-like cells with 12-O- tetradecanoyl-phorbol-13-acetate (TPA), which suggested an increase in the biosynthesis of GM3. These results demonstrate that HL-60 cells express distinct GSL profiles, depending not only on maturation stages but also on differentiation directions.


2020 ◽  
Vol 10 (6) ◽  
pp. 315-324
Author(s):  
Fahmi Radityamurti ◽  
Fauzan Herdian ◽  
Tiara Bunga Mayang Permata ◽  
Handoko Handoko ◽  
Henry Kodrat ◽  
...  

Introduction: Vitamin D has been shown to have anti-cancer properties such as antioxidants, anti-proliferative, and cell differentiation. The property of vitamin D as an anticancer agent triggers researchers to find out whether vitamin D is useful as a radiosensitizer. Multiple studies have been carried out on cell lines in various types of cancer, but the benefits of vitamin D as a radiosensitizer still controversial. This paperwork aims to investigate the utilization of Vitamin D3 (Calcitriol) as radiosensitizer in various cell line through literature review.Methods: A systematic search of available medical literature databases was performed on in-vitro studies with Vitamin D as a radiosensitizer in all types of cell lines. A total of 11 in-vitro studies were evaluated.Results: Nine studies in this review showed a significant effect of Vitamin D as a radiosensitizer agent by promoting cytotoxic autophagy, increasing apoptosis, inhibiting of cell survival and proliferation, promoting gene in ReIB inhibition, inducing senescene and necrosis. The two remaining studies showed no significant effect in the radiosensitizing mechanism of Vitamin D due to lack of evidence in-vitro settings.Conclusion: Vitamin D have anticancer property and can be used as a radiosensitizer by imploring various mechanism pathways in various cell lines. Further research especially in-vivo settings need to be evaluated.


Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 235-242 ◽  
Author(s):  
Gary R. McLean ◽  
Edward V. Quadros ◽  
Sheldon P. Rothenberg ◽  
A. Charles Morgan ◽  
John W. Schrader ◽  
...  

Abstract The plasma protein transcobalamin II (TCII) binds and delivers cobalamin (Cbl; vitamin B12) to all cells, which internalize the TCII/Cbl complex by receptor-mediated endocytosis. Congenital deficiency of TCII results in intracellular Cbl deficiency, one effect of which is to disrupt DNA synthesis, leading to megaloblastic anemia. We report here an in vitro culture system in which cell growth is dependent on delivery of Cbl to cells by TCII. Recombinant human holo-TCII was shown to support in dose-dependent manner the growth of the human erythroleukemic cell line K562 and the murine lymphoma cell line BW5147. Free Cbl also supported cell growth; however, at 100- to 1,000-fold higher concentrations than those effective in the presence of apo-TCII. To determine if cellular depletion of Cbl could be achieved by interfering with interactions between TCII/Cbl and its cell-surface receptor, several monoclonal antibodies raised against human TCII were studied. Three antibodies, found to compete for the same binding site on TCII, proved to be effective inhibitors of TCII/Cbl-dependent cell growth. Our results suggest that monoclonal anti-TCII antibodies that block the function of this protein may prove useful in antitumor therapies.


Blood ◽  
2000 ◽  
Vol 95 (5) ◽  
pp. 1758-1766 ◽  
Author(s):  
Philipp le Coutre ◽  
Elena Tassi ◽  
Marileila Varella-Garcia ◽  
Rossella Barni ◽  
Luca Mologni ◽  
...  

The 2-phenylaminopyrimidine derivative STI571 has been shown to selectively inhibit the tyrosine kinase domain of the oncogenicbcr/abl fusion protein. The activity of this inhibitor has been demonstrated so far both in vitro with bcr/abl expressing cells derived from leukemic patients, and in vivo on nude mice inoculated with bcr/abl positive cells. Yet, no information is available on whether leukemic cells can develop resistance to bcr/ablinhibition. The human bcr/abl expressing cell line LAMA84 was cultured with increasing concentrations of STI571. After approximately 6 months of culture, a new cell line was obtained and named LAMA84R. This newly selected cell line showed an IC50 for the STI571 (1.0 μM) 10-fold higher than the IC50 (0.1 μM) of the parental sensitive cell line. Treatment with STI571 was shown to increase both the early and late apoptotic fraction in LAMA84 but not in LAMA84R. The induction of apoptosis in LAMA84 was associated with the activation of caspase 3–like activity, which did not develop in the resistant LAMA84R cell line. LAMA84R cells showed increased levels of bcr/abl protein and mRNA when compared to LAMA84 cells. FISH analysis with BCR- and ABL-specific probes in LAMA84R cells revealed the presence of a marker chromosome containing approximately 13 to 14 copies of the BCR/ABL gene. Thus, overexpression of the Bcr/Abl protein mediated through gene amplification is associated with and probably determines resistance of human leukemic cells to STI571 in vitro.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4924-4924
Author(s):  
Sema Anak ◽  
Ayca Gul Kanbay ◽  
Cagri Gulec

Abstract In addition to its HDAC inhibitory property, Valproic acid is also known as anticonvulsant agent and mood stabilizer in the treatment of bipolar disorders. Due to its HDAC inhibitory activity and its safety in long-term usage, VPA is presumed to be a good candidate for cancer treatment. It is known that VPA induces apoptosis in leukemic cells, while not in normal cells. VPA is reported as an effective agent in treatment of pediatric AML in clinical studies and  is also well tolerated in children. In this study, the in vitro effect of the combination of HDAC inhibitor VPA with Ara-C and ATRA which are used in AML therapy, is investigated on AML cells. For this purpose, the effect of VPA, Ara-C and ATRA on proliferation of AML cell line THP-1 is tested in cell culture condition. To assess the effect on cell proliferation, p21 expression was measured by RT-PCR method. The use of VPA alone, did not affect the cell viability, while increasing the expression of the p21 gene. VPA in combination with Ara-C, increased the expression of p21 gene more than the other combinations. Thus it is determined that the p21 gene expression is higher as a result of known cell cycle stops. In this study, the understanding of how effective is VPA together with ATRA and/or Ara-C on AML cells, might be a good start for animal studies and clinical trials as a remarkable data for the development of new chemotherapeutic protocols. Disclosures: No relevant conflicts of interest to declare.


1988 ◽  
Vol 16 (03n04) ◽  
pp. 139-144 ◽  
Author(s):  
Po-min Chen ◽  
Lin-lin Yung ◽  
Kuo-I Hsiao ◽  
Chien-ming Chen ◽  
Hsin-mei Yeh ◽  
...  

The promyelocytic cell line HL-60 could be induced to differentiate into morphologically and functionally mature monocytoid cells (up to 20%) following exposure to the Chinese herb Clerodendron Fragrans (1 mg/ml). This effect was time dependent and appeared to work synergistically with interferon-r in this promotion of differentiation. Our study suggests that Clerodendron Fragrans has potential therapeutic value for the treatment of certain acute myelocytic leukemia putatively caused by a block in the myeloid differentiation process.


Sign in / Sign up

Export Citation Format

Share Document