scholarly journals Flow-induced symmetry breaking in growing bacterial biofilms

2019 ◽  
Author(s):  
Philip Pearce ◽  
Boya Song ◽  
Dominic J. Skinner ◽  
Rachel Mok ◽  
Raimo Hartmann ◽  
...  

AbstractBacterial biofilms represent a major form of microbial life on Earth and serve as a model active nematic system, in which activity results from growth of the rod-shaped bacterial cells. In their natural environments, ranging from human organs to industrial pipelines, biofilms have evolved to grow robustly under significant fluid shear. Despite intense practical and theoretical interest, it is unclear how strong fluid flow alters the local and global architectures of biofilms. Here, we combine highly time-resolved single-cell live imaging with 3D multi-scale modeling to investigate the mechanisms by which flow affects the dynamics of all individual cells in growing biofilms. Our experiments and cell-based simulations reveal three quantitatively different growth phases in strong external flow, and the transitions between them. In the initial stages of biofilm development, flow induces a downstream gradient in cell orientation, causing asymmetrical droplet-like biofilm shapes. In the later developmental stages, when the majority of cells are sheltered from the flow by the surrounding extracellular matrix, buckling-induced cell verticalization in the biofilm core restores radially symmetric biofilm growth, in agreement with predictions of a 3D continuum model.

2006 ◽  
Vol 188 (7) ◽  
pp. 2325-2335 ◽  
Author(s):  
Magee Allegrucci ◽  
F. Z. Hu ◽  
K. Shen ◽  
J. Hayes ◽  
Garth D. Ehrlich ◽  
...  

ABSTRACT Streptococcus pneumoniae is among the most common pathogens associated with chronic otitis media with effusion, which has been hypothesized to be a biofilm disease. S. pneumoniae has been shown to form biofilms, however, little is known about the developmental process, the architecture, and the changes that occur upon biofilm development. In the current study we made use of a continuous-culture biofilm system to characterize biofilm development of 14 different S. pneumoniae strains representing at least 10 unique serotypes. The biofilm development process was found to occur in three distinct stages, including initial attachment, cluster formation, and biofilm maturation. While all 14 pneumococcal strains displayed similar developmental stages, the mature biofilm architecture differed significantly among the serotypes tested. Overall, three biofilm architectural groups were detected based on biomass, biofilm thickness, and cluster size. The biofilm viable cell counts and total protein concentration increased steadily over the course of biofilm development, reaching ∼8 × 108 cells and ∼15 mg of protein per biofilm after 9 days of biofilm growth. Proteomic analysis confirmed the presence of distinct biofilm developmental stages by the detection of multiple phenotypes over the course of biofilm development. The biofilm development process was found to correlate not only with differential production of proteins but also with a dramatic increase in the number of detectable proteins, indicating that biofilm formation by S. pneumoniae may be a far more complex process than previously anticipated. Protein identification revealed that proteins involved in virulence, adhesion, and resistance were more abundant under biofilm growth conditions. A possible role of the identified proteins in biofilm formation is discussed.


2020 ◽  
Author(s):  
Laura Kursawe ◽  
Alexander Lauten ◽  
Marc Martinović ◽  
Klaus Affeld ◽  
Ulrich Kertzscher ◽  
...  

<p><strong>Objective:</strong> Most biofilm flow-chambers are designed for standardized homogeneous biofilms for research purposes. These do not mimic the complexity of prosthetic heart valves, which consist of both artificial and biological material.</p> <p>Infective endocarditis (IE) is still associated with a high morbidity and mortality. IE is characterized by bacterial biofilms of the endocardium leading to destruction of the valve. Current research demonstrates that about one quarter of the patients with formal surgery indication cannot undergo surgery. This group of patients needs further options of therapy, but due to a lack of models for IE, prospects of research are low.</p> <p>Therefore, the purpose of this project was to establish an in vitro - model of infective endocarditis to allow growth of bacterial biofilms on porcine aortic valves, serving as baseline for further research.</p> <p><strong>Methods and Results: </strong>A pulsatile two-chamber circulation model was constructed that kept native porcine aortic valves under sterile, physiologic hemodynamic and temperature conditions. To exclude external contamination, sterility tests with sterile culture media were performed for 24h. During this time period, no growth of microorganisms was observed in the system and cultures after plating on standard media remained negative.</p> <p>The system was inoculated with Staphylococcus epidermidis PIA 8400 to create biofilms on porcine aortic valves. Porcine aortic roots were incubated in this system for increasing periods of time and bacterial titration to evaluate bacterial growth and biofilm development on the valves. After incubation, specimens were embedded and tissue sections were analyzed by Fluorescence in situ hybridization (FISH) for direct visualization of the biofilms and bacterial activity.</p> <p>Pilot tests for biofilm growth showed monospecies colonization consisting of cocci with time- and inocula-dependent increase. FISH visualized biofilms with ribosome-containing, and thus metabolic active cocci, tissue infiltration and similar colonization pattern as observed by FISH in human IE heart valves infected by S. epidermidis.</p> <p><strong>Conclusion:</strong> These results demonstrate the establishment of a novel complex in vitro - model for bacterial biofilm growth on porcine aortic roots. The model will allow identifying predilection sites of heart valves for bacterial adhesion and biofilm growth and it may serve as baseline for further research on IE therapy and prevention, e.g. the development of antimicrobial transcatheter approaches to IE.</p>


2020 ◽  
Author(s):  
Natalia Cortes Osorio ◽  
Robert Endrika ◽  
Karsten Kalbitz ◽  
Cordula Vogel

<p>In natural environments, bacteria can be found as multicellular communities exhibiting a high degree of structure, denominated biofilms. Biofilms are composed of microbial cells, often of multiple species, embedded within a matrix of extracellular polymeric substances (EPS). The exact composition, physical and chemical properties, and amounts of these components varies depending on their growth conditions. However, it remains unclear how nutrient availability drives the allocation into cell growth or EPS production, especially under conditions found in soils. Here we aimed to evaluate the effect of various C/N ratios on <em>Bacillus subtilis</em> biofilm growth (spatial expansion and structure) and their EPS composition. We hypothesized that the largest biofilm development and highest EPS production by <em>Bacillus subtilis</em> would be caused by a nutrient imbalance reflected in C/N ratios, especially high C availability. Biofilms were grown on membranes on MSgg agar plates with C/N ratios of 1:1, 10:1, 25:1 and 100:1. Several methods from macroscopic observations over EPS extraction and determination up to various microscopic visualisation techniques were used. The radial expansion of the biofilm was measured, followed by EPS extraction to quantify EPS-proteins and EPS-polysaccharides. Hydrated biofilm samples were studied regarding their biofilm structures by scanning electron microscopy (SEM) within the environmental mode at approximately 97% humidity. Fixed, dehydrated and embedded samples were used to evaluate the biofilm height and internal structure with SEM in high vacuum mode. Low C/N ratio (1:1) resulted in the smallest biofilms in terms of radial expansion and biofilm height, with densely packed layers of cells and low amounts of EPS. Our first results revealed that the highest biofilm productions were observed at C/N ratio of 10:1 and 25:1. The microscopic approaches indicated that biofilms growing at C/N ratios of 100:1 produced the highest amount of EPS. Furthermore, changes in the microscopical features of the biofilms were detected with different structures along the biofilm regions affected by the nutrient conditions. These results suggest that the C/N ratio has a large impact on the biofilm development and structure, with different allocations into microbial cells and EPS. Overall, the results obtained until now allowed us to accept the initial hypothesis, indicating that higher C/N ratios induce a higher EPS production. This suggests that environments containing a high ratio between carbon and the limiting nutrient, often nitrogen, may favour polysaccharide production, probably because energy from the carbon excess is used for polysaccharide biosynthesis.</p>


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Tippapha Pisithkul ◽  
Jeremy W. Schroeder ◽  
Edna A. Trujillo ◽  
Ponlkrit Yeesin ◽  
David M. Stevenson ◽  
...  

ABSTRACTBiofilms are structured communities of tightly associated cells that constitute the predominant state of bacterial growth in natural and human-made environments. Although the core genetic circuitry that controls biofilm formation in model bacteria such asBacillus subtilishas been well characterized, little is known about the role that metabolism plays in this complex developmental process. Here, we performed a time-resolved analysis of the metabolic changes associated with pellicle biofilm formation and development inB. subtilisby combining metabolomic, transcriptomic, and proteomic analyses. We report surprisingly widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. Most of these metabolic alterations were hitherto unrecognized as biofilm associated. For example, we observed increased activity of the tricarboxylic acid (TCA) cycle during early biofilm growth, a shift from fatty acid biosynthesis to fatty acid degradation, reorganization of iron metabolism and transport, and a switch from acetate to acetoin fermentation. Close agreement between metabolomic, transcriptomic, and proteomic measurements indicated that remodeling of metabolism during biofilm development was largely controlled at the transcriptional level. Our results also provide insights into the transcription factors and regulatory networks involved in this complex metabolic remodeling. Following upon these results, we demonstrated that acetoin production via acetolactate synthase is essential for robust biofilm growth and has the dual role of conserving redox balance and maintaining extracellular pH. This report represents a comprehensive systems-level investigation of the metabolic remodeling occurring duringB. subtilisbiofilm development that will serve as a useful road map for future studies on biofilm physiology.IMPORTANCEBacterial biofilms are ubiquitous in natural environments and play an important role in many clinical, industrial, and ecological settings. Although much is known about the transcriptional regulatory networks that control biofilm formation in model bacteria such asBacillus subtilis, very little is known about the role of metabolism in this complex developmental process. To address this important knowledge gap, we performed a time-resolved analysis of the metabolic changes associated with bacterial biofilm development inB. subtilisby combining metabolomic, transcriptomic, and proteomic analyses. Here, we report a widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. This report serves as a unique hypothesis-generating resource for future studies on bacterial biofilm physiology. Outside the biofilm research area, this work should also prove relevant to any investigators interested in microbial physiology and metabolism.


2021 ◽  
Vol 9 (12) ◽  
pp. 2466
Author(s):  
Yajun Zhang ◽  
Yusheng Lin ◽  
Xin Lv ◽  
Aoshu Xu ◽  
Caihui Feng ◽  
...  

To in situ and noninvasively monitor the biofilm development process by low-field nuclear magnetic resonance (NMR), experiments should be made to determine the mechanisms responsible for the T2 signals of biofilm growth. In this paper, biofilms were cultivated in both fluid media and saturated porous media. T2 relaxation for each sample was measured to investigate the contribution of the related processes to T2 relaxation signals. In addition, OD values of bacterial cell suspensions were measured to provide the relative number of bacterial cells. We also obtained SEM photos of the biofilms after vacuum freeze-drying the pure sand and the sand with biofilm formation to confirm the space within the biofilm matrix and identify the existence of biofilm formation. The T2 relaxation distribution is strongly dependent on the density of the bacterial cells suspended in the fluid and the stage of biofilm development. The peak time and the peak percentage can be used as indicators of the biofilm growth states.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Chia Hung ◽  
Yizhou Zhou ◽  
Jerome S. Pinkner ◽  
Karen W. Dodson ◽  
Jan R. Crowley ◽  
...  

ABSTRACTBacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenicEscherichia coli(UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community.IMPORTANCEBacteria can form biofilms in diverse niches, including abiotic surfaces, living cells, and at the air-liquid interface of liquid media. Encasing these cellular communities is a self-produced extracellular matrix (ECM) that can be composed of proteins, polysaccharides, and nucleic acids. The ECM protects biofilm bacteria from environmental insults and also makes the dissolution of biofilms very challenging. As a result, formation of biofilms within humans (during infection) or on industrial material (such as water pipes) has detrimental and costly effects. In order to combat bacterial biofilms, a better understanding of components required for biofilm formation and the ECM is required. This study defined the ECM composition and architecture of floating pellicle biofilms formed byEscherichia coli.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 407 ◽  
Author(s):  
Grzegorz Guła ◽  
Paulina Szymanowska ◽  
Tomasz Piasecki ◽  
Sylwia Góras ◽  
Teodor Gotszalk ◽  
...  

Bacterial biofilm prevention and eradication are common treatment problems, hence there is a need for advanced and precise experimental methods for its monitoring. Bacterial resistance to antibiotics has resulted in an interest in using a natural bacterial enemy—bacteriophages. In this study, we present the application of quartz tuning forks (QTF) as impedance sensors to determine in real-time the direct changes in Pseudomonas aeruginosa PAO1 biofilm growth dynamics during Pseudomonas phage LUZ 19 treatment at different multiplicities of infection (MOI). The impedance of the electric equivalent circuit (EEC) allowed us to measure the series resistance (Rs) corresponding to the growth-medium resistance (planktonic culture changes) and the conductance (G) corresponding to the level of QTF sensor surface coverage by bacterial cells and the extracellular polymer structure (EPS) matrix. It was shown that phage impacts on sessile cells (G dynamics) was very similar in the 10-day biofilm development regardless of applied MOI (0.1, 1 or 10). The application of phages at an early stage (at the sixth h) and on three-day biofilm caused a significant slowdown in biofilm dynamics, whereas the two-day biofilm turned out to be insensitive to phage infection. We observed an inhibitory effect of phage infection on the planktonic culture (Rs dynamics) regardless of the MOI applied and the time point of infection. Moreover, the Rs parameter made it possible to detect PAO1 population regrowth at the latest time points of incubation. The number of phage-insensitive forms reached the level of untreated culture at around the sixth day of infection. We conclude that the proposed impedance spectroscopy technique can be used to measure the physiological changes in the biofilm matrix composition, as well as the condition of planktonic cultures in order to evaluate the activity of anti-biofilm compounds.


Science ◽  
2020 ◽  
Vol 369 (6499) ◽  
pp. 71-77 ◽  
Author(s):  
Boyang Qin ◽  
Chenyi Fei ◽  
Andrew A. Bridges ◽  
Ameya A. Mashruwala ◽  
Howard A. Stone ◽  
...  

Bacterial biofilms represent a basic form of multicellular organization that confers survival advantages to constituent cells. The sequential stages of cell ordering during biofilm development have been studied in the pathogen and model biofilm-former Vibrio cholerae. It is unknown how spatial trajectories of individual cells and the collective motions of many cells drive biofilm expansion. We developed dual-view light-sheet microscopy to investigate the dynamics of biofilm development from a founder cell to a mature three-dimensional community. Tracking of individual cells revealed two distinct fates: one set of biofilm cells expanded ballistically outward, while the other became trapped at the substrate. A collective fountain-like flow transported cells to the biofilm front, bypassing members trapped at the substrate and facilitating lateral biofilm expansion. This collective flow pattern was quantitatively captured by a continuum model of biofilm growth against substrate friction. Coordinated cell movement required the matrix protein RbmA, without which cells expanded erratically. Thus, tracking cell lineages and trajectories in space and time revealed how multicellular structures form from a single founder cell.


Author(s):  
Mayur Mukhi ◽  
A. S. Vishwanathan

The capacity of bacteria to form biofilms is an important trait for their survival and persistence. Biofilms occur naturally in soil and aquatic environments, are associated with animals ranging from insects to humans and are also found in built environments. They are typically encountered as a challenge in healthcare, food industry, and water supply ecosystems. In contrast, they are known to play a key role in the industrial production of commercially valuable products, environmental remediation processes, and in microbe-catalysed electrochemical systems for energy and resource recovery from wastewater. While there are many recent articles on biofilm control and removal, review articles on promoting biofilm growth for biotechnological applications are unavailable. Biofilm formation is a tightly regulated response to perturbations in the external environment. The multi-stage process, mediated by an assortment of proteins and signaling systems, involves the attachment of bacterial cells to a surface followed by their aggregation in a matrix of extracellular polymeric substances. Biofilms can be promoted by altering the external environment in a controlled manner, supplying molecules that trigger the aggregation of cells and engineering genes associated with biofilm development. This mini-review synthesizes findings from studies that have described such strategies and highlights areas needing research attention.


2021 ◽  
Vol 118 (31) ◽  
pp. e2107107118
Author(s):  
Qiuting Zhang ◽  
Jian Li ◽  
Japinder Nijjer ◽  
Haoran Lu ◽  
Mrityunjay Kothari ◽  
...  

Biofilms are aggregates of bacterial cells surrounded by an extracellular matrix. Much progress has been made in studying biofilm growth on solid substrates; however, little is known about the biophysical mechanisms underlying biofilm development in three-dimensional confined environments in which the biofilm-dwelling cells must push against and even damage the surrounding environment to proliferate. Here, combining single-cell imaging, mutagenesis, and rheological measurement, we reveal the key morphogenesis steps of Vibrio cholerae biofilms embedded in hydrogels as they grow by four orders of magnitude from their initial size. We show that the morphodynamics and cell ordering in embedded biofilms are fundamentally different from those of biofilms on flat surfaces. Treating embedded biofilms as inclusions growing in an elastic medium, we quantitatively show that the stiffness contrast between the biofilm and its environment determines biofilm morphology and internal architecture, selecting between spherical biofilms with no cell ordering and oblate ellipsoidal biofilms with high cell ordering. When embedded in stiff gels, cells self-organize into a bipolar structure that resembles the molecular ordering in nematic liquid crystal droplets. In vitro biomechanical analysis shows that cell ordering arises from stress transmission across the biofilm–environment interface, mediated by specific matrix components. Our imaging technique and theoretical approach are generalizable to other biofilm-forming species and potentially to biofilms embedded in mucus or host tissues as during infection. Our results open an avenue to understand how confined cell communities grow by means of a compromise between their inherent developmental program and the mechanical constraints imposed by the environment.


Sign in / Sign up

Export Citation Format

Share Document