scholarly journals Probing the polarity of spontaneous perisomatic GABAergic synaptic transmission during epileptogenesis in the mouse CA3 circuit in vivo

2019 ◽  
Author(s):  
Olivier Dubanet ◽  
Arnaldo Ferreira Gomes Da Silva ◽  
Andreas Frick ◽  
Hajime Hirase ◽  
Anna Beyeler ◽  
...  

AbstractSeveral studies suggest a contribution of reversed, excitatory GABA to epileptogenesis. But GABAergic transmission critically depends on the very dynamic combination of membrane potential, conductance and occurrence of other synaptic inputs. Taking this complexity into account implies measuring the postsynaptic responses to spontaneously occurring GABAergic events, in vivo, without interfering with neuronal [Cl-]i. Because of technical difficulties, this has not been achieved yet. We have overcome this challenge by combining in vivo extracellular detection of both optogenetically-evoked and spontaneously occurring unitary inhibitory postsynaptic field-potentials (fIPSPs), with the silicon probe recording of neuronal firing activity, with single cell resolution. We report that isolated acute seizures induced a global reversal of the polarity of CA3 hippocampal GABAergic transmission, shifting from inhibitory to excitatory for a duration of several tens of seconds before returning to normal polarity. Nevertheless we observed this reversed polarity only in the post-ictal period during which neurons (including GABAergic interneurons) were silent. Perisomatic inhibition was also affected during the course of epileptogenesis in the Kainate model of chronic epilepsy. One week after Kainate injection, the majority of pyramidal cells escaped inhibitory control by perisomatic GABAergic events. Besides, we did not observe a reversed polarity of fIPSPs, but fIPSPs provided time-locked excitation to a minor subset of CA3 pyramidal neurons. Beside methodological interests, our results suggest that subtle alterations in the regulation of [Cl-]i and perisomatic GABAergic transmission already operate in the hippocampal circuit during the latent period that precedes the establishment of chronic epilepsy.

1997 ◽  
Vol 78 (3) ◽  
pp. 1735-1739 ◽  
Author(s):  
Denis Paré ◽  
Elen Lebel ◽  
Eric J. Lang

Paré, Denis, Elen LeBel, and Eric J. Lang. Differential impact of miniature synaptic potentials on the somata and dendrites of pyramidal neurons in vivo. J. Neurophysiol. 78: 1735–1739, 1997. We studied the impact of transmitter release resistant to tetrodotoxin (TTX) in morphologically identified neocortical pyramidal neurons recorded intracellularly in barbiturate-anesthetized cats. It was observed that TTX-resistant release occurs in pyramidal neurons in vivo and at much higher frequencies than was previously reported in vitro. Further, in agreement with previous findings indicating that GABAergic and glutamatergic synapses are differentially distributed in the somata and dendrites of pyramidal cells, we found that most miniature synaptic potentials were sensitive to γ-aminobutyric acid-A (GABAA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists in presumed somatic and dendritic impalements, respectively. Pharmacological blockage of spontaneous synaptic events produced large increases in input resistance that were more important in dendritic (≈50%) than somatic (≈10%) impalements. These findings imply that in the intact brain, pyramidal neurons are submitted to an intense spike-independent synaptic bombardment that decreases the space constant of the cells. These results should be taken into account when extrapolating in vitro findings to intact brains.


2003 ◽  
Vol 90 (2) ◽  
pp. 771-779 ◽  
Author(s):  
Chaelon I. O. Myme ◽  
Ken Sugino ◽  
Gina G. Turrigiano ◽  
Sacha B. Nelson

To better understand regulation of N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor complements across the cortex, and to investigate NMDA receptor (NMDAR)-based models of persistent activity, we compared NMDA/AMPA ratios in prefrontal (PFC) and visual cortex (VC) in rat. Whole cell voltage-clamp responses were recorded in brain slices from layer 2/3 pyramidal cells of the medial PFC and VC of rats aged p16–p21. Mixed miniature excitatory postsynaptic currents (mEPSCs) having AMPA receptor (AMPAR)- and NMDAR-mediated components were isolated in nominally 0 Mg2+ ACSF. Averaged mEPSCs were well-fit by double exponentials. No significant differences in the NMDA/AMPA ratio (PFC: 27 ± 1%; VC: 28 ± 3%), peak mEPSC amplitude (PFC: 19.1 ± 1 pA; VC: 17.5 ± 0.7 pA), NMDAR decay kinetics (PFC: 69 ± 8 ms; VC: 67 ± 6 ms), or degree of correlation between NMDAR- and AMPAR-mediated mEPSC components were found between the areas (PFC: n = 27; VC: n = 28). Recordings from older rats (p26–29) also showed no differences. EPSCs were evoked extracellularly in 2 mM Mg2+ at depolarized potentials; although the average NMDA/AMPA ratio was larger than that observed for mEPSCs, the ratio was similar in the two regions. In nominally 0 Mg2+ and in the presence of CNQX, spontaneous activation of NMDAR increased recording noise and produced a small tonic depolarization which was similar in both areas. We conclude that this basic property of excitatory transmission is conserved across PFC and VC synapses and is therefore unlikely to contribute to differences in firing patterns observed in vivo in the two regions.


2007 ◽  
Vol 98 (3) ◽  
pp. 1791-1805 ◽  
Author(s):  
Masanori Murayama ◽  
Enrique Pérez-Garci ◽  
Hans-Rudolf Lüscher ◽  
Matthew E. Larkum

Calcium influx into the dendritic tufts of layer 5 neocortical pyramidal neurons modifies a number of important cellular mechanisms. It can trigger local synaptic plasticity and switch the firing properties from regular to burst firing. Due to methodological limitations, our knowledge about Ca2+ spikes in the dendritic tuft stems mostly from in vitro experiments. However, it has been speculated that regenerative Ca2+ events in the distal dendrites correlate with distinct behavioral states. Therefore it would be most desirable to be able to record these Ca2+ events in vivo, preferably in the behaving animal. Here, we present a novel approach for recording Ca2+ signals in the dendrites of populations of layer 5 pyramidal neurons in vivo, which ensures that all recorded fluorescence changes are due to intracellular Ca2+ signals in the apical dendrites. The method has two main features: 1) bolus loading of layer 5 with a membrane-permeant Ca2+ dye resulting in specific loading of pyramidal cell dendrites in the upper layers and 2) a fiberoptic cable attached to a gradient index lens and a prism reflecting light horizontally at 90° to the angle of the apical dendrites. We demonstrate that the in vivo signal-to-noise ratio recorded with this relatively inexpensive and easy-to-implement fiberoptic-based device is comparable to conventional camera-based imaging systems used in vitro. In addition, the device is flexible and lightweight and can be used for recording Ca2+ signals in the distal dendritic tuft of freely behaving animals.


1998 ◽  
Vol 79 (3) ◽  
pp. 1549-1566 ◽  
Author(s):  
Xiao-Jing Wang

Wang, Xiao-Jing. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol. 79: 1549–1566, 1998. In this work, we present a quantitative theory of temporal spike-frequency adaptation in cortical pyramidal cells. Our model pyramidal neuron has two-compartments (a “soma” and a “dendrite”) with a voltage-gated Ca2+ conductance ( g Ca) and a Ca2+-dependent K+ conductance ( g AHP) located at the dendrite or at both compartments. Its frequency-current relations are comparable with data from cortical pyramidal cells, and the properties of spike-evoked intracellular [Ca2+] transients are matched with recent dendritic [Ca2+] imaging measurements. Spike-frequency adaptation in response to a current pulse is characterized by an adaptation time constant τadap and percentage adaptation of spike frequency F adap [% (peak − steady state)/peak]. We show how τadap and F adap can be derived in terms of the biophysical parameters of the neural membrane and [Ca2+] dynamics. Two simple, experimentally testable, relations between τadap and F adap are predicted. The dependence of τadap and F adap on current pulse intensity, electrotonic coupling between the two compartments, g AHP as well the [Ca2+] decay time constant τCa, is assessed quantitatively. In addition, we demonstrate that the intracellular [Ca2+] signal can encode the instantaneous neuronal firing rate and that the conductance-based model can be reduced to a simple calcium-model of neuronal activity that faithfully predicts the neuronal firing output even when the input varies relatively rapidly in time (tens to hundreds of milliseconds). Extensive simulations have been carried out for the model neuron with random excitatory synaptic inputs mimicked by a Poisson process. Our findings include 1) the instantaneous firing frequency (averaged over trials) shows strong adaptation similar to the case with current pulses; 2) when the g AHP is blocked, the dendritic g Ca could produce a hysteresis phenomenon where the neuron is driven to switch randomly between a quiescent state and a repetitive firing state. The firing pattern is very irregular with a large coefficient of variation of the interspike intervals (ISI CV > 1). The ISI distribution shows a long tail but is not bimodal. 3) By contrast, in an intrinsically bursting regime (with different parameter values), the model neuron displays a random temporal mixture of single action potentials and brief bursts of spikes. Its ISI distribution is often bimodal and its power spectrum has a peak. 4) The spike-adapting current I AHP, as delayed inhibition through intracellular Ca2+ accumulation, generates a “forward masking” effect, where a masking input dramatically reduces or completely suppresses the neuronal response to a subsequent test input. When two inputs are presented repetitively in time, this mechanism greatly enhances the ratio of the responses to the stronger and weaker inputs, fulfilling a cellular form of lateral inhibition in time. 5) The [Ca2+]-dependent I AHP provides a mechanism by which the neuron unceasingly adapts to the stochastic synaptic inputs, even in the stationary state following the input onset. This creates strong negative correlations between output ISIs in a frequency-dependent manner, while the Poisson input is totally uncorrelated in time. Possible functional implications of these results are discussed.


2020 ◽  
Author(s):  
Jürgen Graf ◽  
Chuanqiang Zhang ◽  
Stephan Lawrence Marguet ◽  
Tanja Herrmann ◽  
Tom Flossmann ◽  
...  

AbstractNKCC1 is the primary transporter mediating chloride uptake in immature principal neurons, but its role in the development of in vivo network dynamics and cognitive abilities remains unknown. Here, we address the function of NKCC1 in developing mice using electrophysiological, optical and behavioral approaches. We report that NKCC1 deletion from telencephalic glutamatergic neurons decreases in-vitro excitatory GABA actions and impairs neuronal synchrony in neonatal hippocampal brain slices. In vivo, it has a minor impact on correlated spontaneous activity in the hippocampus and does not affect network activity in the intact visual cortex. Moreover, long-term effects of the developmental NKCC1 deletion on synaptic maturation, network dynamics and behavioral performance are subtle. Our data reveal a neural network function of depolarizing GABA in the hippocampus in vivo, but challenge the hypothesis that NKCC1 is essential for major aspects of hippocampal development.


2021 ◽  
Author(s):  
Tim J Viney ◽  
Barbara Sarkany ◽  
A Tugrul Ozdemir ◽  
Katja Hartwich ◽  
Judith Schweimer ◽  
...  

Intracellular aggregation of hyperphosphorylated Tau (pTau) in the brain is associated with cognitive and motor impairments, and ultimately neurodegeneration. We investigate how human pTau affects cells and network activity in the hippocampal formation of THY-Tau22 tauopathy model mice in vivo. We find that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to neurodegeneration, and we establish that pTau spreads to oligodendrocytes. During goal-directed virtual navigation in aged transgenic mice, we detect fewer high-firing pyramidal cells, with the remaining cells retaining their coupling to theta oscillations. Analysis of network oscillations and firing patterns of pyramidal and GABAergic neurons recorded in head-fixed and freely-moving mice suggests preserved neuronal coordination. In spatial memory tests, transgenic mice have reduced short-term familiarity but spatial working and reference memory are surprisingly normal. We hypothesize that unimpaired subcortical network mechanisms implementing cortical neuronal coordination compensate for the widespread pTau aggregation, loss of high-firing cells and neurodegeneration.


2020 ◽  
Author(s):  
Xiaxia Xu ◽  
Lingzhen Song ◽  
Ileana L Hanganu-Opatz

Abstract Disrupted-in-schizophrenia 1 (DISC1) gene represents an intracellular hub of developmental processes. When combined with early environmental stressors, such as maternal immune activation, but not in the absence of thereof, whole-brain DISC1 knock-down leads to memory and executive deficits as result of impaired prefrontal–hippocampal communication throughout development. While synaptic dysfunction in neonatal prefrontal cortex (PFC) has been recently identified as one source of abnormal long-range coupling, the contribution of hippocampus (HP) is still unknown. Here, we aim to fill this knowledge gap by combining in vivo electrophysiology and optogenetics with morphological and behavioral assessment of immune-challenged mice with DISC1 knock-down either in the whole brain (GE) or restricted to pyramidal neurons in hippocampal CA1 area (GHPE). We found abnormal network activity, sharp-waves, and neuronal firing in CA1 that complement the deficits in upper layer of PFC. Moreover, optogenetic activating CA1 pyramidal neurons fails to activate the prefrontal local circuits. These deficits that persist till prejuvenile age relate to dendrite sparsification and loss of spines of CA1 pyramidal neurons. As a long-term consequence, DISC1 knock-down in HP leads to poorer recognition memory at prejuvenile age. Thus, DISC1-controlled developmental processes in HP in immune-challenged mice are critical for circuit function and cognitive behavior.


2019 ◽  
Author(s):  
Maria Teleńczuk ◽  
Bartosz Teleńczuk ◽  
Alain Destexhe

AbstractSynaptic currents represent a major contribution to the local field potential (LFP) in brain tissue, but the respective contribution of excitatory and inhibitory synapses is not known. Here, we provide estimates of this contribution by using computational models of hippocampal pyramidal neurons, constrained by in vitro recordings. We focus on the unitary LFP (uLFP) generated by single neurons in the CA3 region of the hippocampus. We first reproduce experimental results for hippocampal basket cells, and in particular how inhibitory uLFP are distributed within hippocampal layers. Next, we calculate the uLFP generated by pyramidal neurons, using morphologically-reconstructed CA3 pyramidal cells. The model shows that the excitatory uLFP is of small amplitude, smaller than inhibitory uLFPs. Indeed, when the two are simulated together, inhibitory uLFPs mask excitatory uLFPs, which might create the illusion that the inhibitory field is generated by pyramidal cells. These results provide an explanation for the observation that excitatory and inhibitory uLFPs are of the same polarity, in vivo and in vitro. These results also show that somatic inhibitory currents are large contributors of the LFP, which is important information to interpret this signal. Finally, the results of our model might form the basis of a simple method to compute the LFP, which could be applied to point neurons for each cell type, thus providing a simple biologically-grounded method to calculate LFPs from neural networks.


2008 ◽  
Vol 100 (2) ◽  
pp. 609-619 ◽  
Author(s):  
Sylvain Rheims ◽  
Marat Minlebaev ◽  
Anton Ivanov ◽  
Alfonso Represa ◽  
Rustem Khazipov ◽  
...  

GABA depolarizes immature cortical neurons. However, whether GABA excites immature neocortical neurons and drives network oscillations as in other brain structures remains controversial. Excitatory actions of GABA depend on three fundamental parameters: the resting membrane potential ( Em), reversal potential of GABA ( EGABA), and threshold of action potential generation ( Vthr). We have shown recently that conventional invasive recording techniques provide an erroneous estimation of these parameters in immature neurons. In this study, we used noninvasive single N-methyl-d-aspartate and GABA channel recordings in rodent brain slices to measure both Em and EGABA in the same neuron. We show that GABA strongly depolarizes pyramidal neurons and interneurons in both deep and superficial layers of the immature neocortex (P2–P10). However, GABA generates action potentials in layer 5/6 (L5/6) but not L2/3 pyramidal cells, since L5/6 pyramidal cells have more depolarized resting potentials and more hyperpolarized Vthr. The excitatory GABA transiently drives oscillations generated by L5/6 pyramidal cells and interneurons during development (P5–P12). The NKCC1 co-transporter antagonist bumetanide strongly reduces [Cl−]i, GABA-induced depolarization, and network oscillations, confirming the importance of GABA signaling. Thus a strong GABA excitatory drive coupled with high intrinsic excitability of L5/6 pyramidal neurons and interneurons provide a powerful mechanism of synapse-driven oscillatory activity in the rodent neocortex in vitro. In the companion paper, we show that the excitatory GABA drives layer-specific seizures in the immature neocortex.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 779
Author(s):  
Claudia Sagheddu ◽  
Nicholas Pintori ◽  
Predrag Kalaba ◽  
Vladimir Dragačević ◽  
Gessica Piras ◽  
...  

Treatments for cognitive impairments associated with neuropsychiatric disorders, such as attention deficit hyperactivity disorder or narcolepsy, aim at modulating extracellular dopamine levels in the brain. CE-123 (5-((benzhydrylsulfinyl)methyl) thiazole) is a novel modafinil analog with improved specificity and efficacy for dopamine transporter inhibition that improves cognitive and motivational processes in experimental animals. We studied the neuropharmacological and behavioral effects of the S-enantiomer of CE-123 ((S)-CE-123) and R-modafinil in cognitive- and reward-related brain areas of adult male rats. In vivo single unit recordings in anesthetized animals showed that (S)-CE-123, but not R-modafinil, dose-dependently (1.25 to 10 mg/kg i.v.) reduced firing of pyramidal neurons in the infralimbic/prelimbic (IL/PrL) cortex. Neither compound the affected firing activity of ventral tegmental area dopamine cells. In freely moving animals, (S)-CE-123 (10 mg/kg i.p.) increased extracellular dopamine levels in the IL/PrL, with different patterns when compared to R-modafinil (10 mg/kg i.p.); in the nucleus accumbens shell, a low and transitory increase of dopamine was observed only after (S)-CE-123. Neither (S)-CE-123 nor R-modafinil initiated the emission of 50-kHz ultrasonic vocalizations, a behavioral marker of positive affect and drug-mediated reward. Our data support previous reports of the procognitive effects of (S)-CE-123, and show a minor impact on reward-related dopaminergic areas.


Sign in / Sign up

Export Citation Format

Share Document