scholarly journals A Temporal Transcriptional Map of Human Natural Killer Cell Differentiation

2019 ◽  
Author(s):  
Aline Pfefferle ◽  
Herman Netskar ◽  
Eivind Heggernes Ask ◽  
Susanne Lorenz ◽  
Jodie P. Goodridge ◽  
...  

AbstractNatural killer cell repertoires are functionally diversified as a result of differentiation, homeostatic receptor-ligand interactions and adaptive responses to viral infections. However, the regulatory gene-circuits that define the manifold cell states and drive NK cell differentiation have not been clearly resolved. Here, we performed single-cell RNA sequencing of 26,506 cells derived from sorted phenotypically-defined human NK cell subsets to delineate a tightly coordinated differentiation process from a small population of CD56brightprecursors to adaptive NKG2C+CD56dimNK cells. RNA velocity analysis identified a clear directionality in the transition from CD56brightto CD56dimNK cells, which was dominated by genes involved in transcription and translation as well as acquisition of NK cell effector function. Gene expression trends mapped to pseudotime, defined by increasing entropy, identified three distinct transcriptional checkpoints, reflecting important changes in regulatory gene-circuits. The CD56brightNK cell population dominated pseudotime with two distinct checkpoints separating precursors from intermediate states that gradually took on transcriptional signatures similar to CD56dimNK cells. The final checkpoint occurred during late terminal differentiation of CD56dimNK cells and was associated with unique divergent gene-expression trends. Furthermore, we utilized this single-cell RNA sequencing resource to decipher the regulation of genes involved in lysosomal biogenesis and found a coordinated gradual increase in theRAB4andBLOC1Sgene families with differentiation into CD56dimNK cells. These results identify important gene programs driving functional diversification and specialization during NK cell differentiation and hold potential to guide new strategies for NK cell-based cancer immunotherapy.

Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 3853-3864 ◽  
Author(s):  
Niklas K. Björkström ◽  
Peggy Riese ◽  
Frank Heuts ◽  
Sandra Andersson ◽  
Cyril Fauriat ◽  
...  

Abstract Natural killer (NK) cells are lymphocytes of the innate immune system that, following differentiation from CD56bright to CD56dim cells, have been thought to retain fixed functional and phenotypic properties throughout their lifespan. In contrast to this notion, we here show that CD56dim NK cells continue to differentiate. During this process, they lose expression of NKG2A, sequentially acquire inhibitory killer cell inhibitory immunoglobulin-like receptors and CD57, change their expression patterns of homing molecules, and display a gradual decline in proliferative capacity. All cellular intermediates of this process are represented in varying proportions at steady state and appear, over time, during the reconstitution of the immune system, as demonstrated in humanized mice and in patients undergoing hematopoietic stem cell transplantation. CD56dim NK-cell differentiation, and the associated functional imprint, occurs independently of NK-cell education by interactions with self–human leukocyte antigen class I ligands and is an essential part of the formation of human NK-cell repertoires.


Blood ◽  
2011 ◽  
Vol 117 (17) ◽  
pp. 4511-4518 ◽  
Author(s):  
Katrina Soderquest ◽  
Nick Powell ◽  
Carmelo Luci ◽  
Nico van Rooijen ◽  
Andrés Hidalgo ◽  
...  

Abstract Natural killer (NK) cells play a major role in immunologic surveillance of cancer. Whether NK-cell subsets have specific roles during antitumor responses and what the signals are that drive their terminal maturation remain unclear. Using an in vivo model of tumor immunity, we show here that CD11bhiCD27low NK cells migrate to the tumor site to reject major histocompatibility complex class I negative tumors, a response that is severely impaired in Txb21−/− mice. The phenotypical analysis of Txb21-deficient mice shows that, in the absence of Txb21, NK-cell differentiation is arrested specifically at the CD11bhiCD27hi stage, resulting in the complete absence of terminally differentiated CD11bhiCD27low NK cells. Adoptive transfer experiments and radiation bone marrow chimera reveal that a Txb21+/+ environment rescues the CD11bhiCD27hi to CD11bhiCD27low transition of Txb21−/− NK cells. Furthermore, in vivo depletion of myeloid cells and in vitro coculture experiments demonstrate that spleen monocytes mediate the terminal differentiation of peripheral NK cells in a Txb21- and IL-15Rα–dependent manner. Together, these data reveal a novel, unrecognized role for Txb21 expression in monocytes in promoting NK-cell development and help appreciate how various NK-cell subsets are generated and participate in antitumor immunity.


Author(s):  
Helen R Wagstaffe ◽  
Elizabeth A Clutterbuck ◽  
Viki Bockstal ◽  
Jeroen N Stoop ◽  
Kerstin Luhn ◽  
...  

Abstract Background Antibody Fc-mediated functions, such as antibody-dependent cellular cytotoxicity, contribute to vaccine-induced protection against viral infections. Fc-mediated function of anti-Ebola glycoprotein (GP) antibodies suggest that Fc-dependent activation of effector cells, including natural killer (NK) cells, could play a role in vaccination against Ebola virus disease. Methods We analyzed the effect on primary human NK cell activation of anti-Ebola GP antibody in the serum of United Kingdom–based volunteers vaccinated with the novel 2-dose heterologous adenovirus type 26.ZEBOV, modified vaccinia Ankara–BN-Filo vaccine regimen. Results We demonstrate primary human NK cell CD107a and interferon γ expression, combined with down-regulation of CD16, in response to recombinant Ebola virus GP and post-vaccine dose 1 and dose 2 serum samples. These responses varied significantly with vaccine regimen, and NK cell activation was found to correlate with anti-GP antibody concentration. We also reveal an impact of NK cell differentiation phenotype on antibody-dependent NK cell activation, with highly differentiated CD56dimCD57+ NK cells being the most responsive. Conclusions These findings highlight the dual importance of vaccine-induced antibody concentration and NK cell differentiation status in promoting Fc-mediated activation of NK cells after vaccination, raising a potential role for antibody-mediated NK cell activation in vaccine-induced immune responses.


2006 ◽  
Vol 203 (4) ◽  
pp. 1033-1043 ◽  
Author(s):  
Aharon G. Freud ◽  
Akihiko Yokohama ◽  
Brian Becknell ◽  
Melissa T. Lee ◽  
Hsiaoyin C. Mao ◽  
...  

Human natural killer (NK) cells originate from CD34(+) hematopoietic progenitor cells, but the discrete stages of NK cell differentiation in vivo have not been elucidated. We identify and functionally characterize, from human lymph nodes and tonsils, four NK cell developmental intermediates spanning the continuum of differentiation from a CD34(+) NK cell progenitor to a functionally mature NK cell. Analyses of each intermediate stage for CD34, CD117, and CD94 cell surface expression, lineage differentiation potentials, capacity for cytokine production and natural cytotoxicity, and ETS-1, GATA-3, and T-BET expression provide evidence for a new model of human NK cell differentiation in secondary lymphoid tissues.


Blood ◽  
2020 ◽  
Vol 135 (9) ◽  
pp. 629-637
Author(s):  
Michael T. Lam ◽  
Emily M. Mace ◽  
Jordan S. Orange

Abstract Natural killer cell deficiencies (NKDs) are an emerging phenotypic subtype of primary immune deficiency. NK cells provide a defense against virally infected cells using a variety of cytotoxic mechanisms, and patients who have defective NK cell development or function can present with atypical, recurrent, or severe herpesviral infections. The current pipeline for investigating NKDs involves the acquisition and clinical assessment of patients with a suspected NKD followed by subsequent in silico, in vitro, and in vivo laboratory research. Evaluation involves initially quantifying NK cells and measuring NK cell cytotoxicity and expression of certain NK cell receptors involved in NK cell development and function. Subsequent studies using genomic methods to identify the potential causative variant are conducted along with variant impact testing to make genotype-phenotype connections. Identification of novel genes contributing to the NKD phenotype can also be facilitated by applying the expanding knowledge of NK cell biology. In this review, we discuss how NKDs that affect NK cell cytotoxicity can be approached in the clinic and laboratory for the discovery of novel gene variants.


1997 ◽  
Vol 83 (5) ◽  
pp. 1492-1498 ◽  
Author(s):  
M. Klokker ◽  
N. H. Secher ◽  
P. Madsen ◽  
M. Pedersen ◽  
B. K. Pedersen

Klokker, M., N. H. Secher, P. Madsen, M. Pedersen, and B. K. Pedersen. Adrenergic β1- and β1+2-receptor blockade suppress the natural killer cell response to head-up tilt in humans. J. Appl. Physiol. 83(5): 1492–1498, 1997.—To evaluate stress-induced changes in blood leukocytes with emphasis on the natural killer (NK) cells, eight male volunteers were followed during three trials of head-up tilt with adrenergic β1- (metoprolol) and β1+2- (propranolol) blockade and with saline (control) infusions. The β1- and β1+2-receptor blockade did not affect the appearance of presyncopal symptoms, but the head-up tilt induced a transient lymphocytosis that was abolished by β1+2-receptor blockade but not by β1-receptor blockade. Head-up tilt also resulted in delayed neutrophilia, which was insensitive to β-receptor blockade. Lymphocyte subset analysis revealed that the head-up tilt resulted in a twofold increase in the percentage and absolute number of CD3−/CD16+and CD3−/CD56+NK cells in peripheral blood and that this increase was partially blocked by metoprolol and abolished by propranolol. The NK cell activity on a per NK cell basis did not change during head-up tilt, indicating that the cytotoxic capability of NK cells recruited to circulation is unchanged. The data suggest that the head-up tilt-induced lymphocytosis was due mainly to CD16+and CD56+NK cells and that their recruitment to the blood was inhibited by β1- and especially β1+2-receptor blockade. Thus stress-induced recruitment of lymphocytes, and of NK cells in particular, is mediated by epinephrine through activation of β-receptors on the lymphocytes.


Blood ◽  
1984 ◽  
Vol 63 (2) ◽  
pp. 260-269 ◽  
Author(s):  
KF Mangan ◽  
ME Hartnett ◽  
SA Matis ◽  
A Winkelstein ◽  
T Abo

Abstract To determine the role of natural killer (NK) cells in the regulation of human erythropoiesis, we studied the effects of NK-enriched cell populations on the in vitro proliferation of erythroid stem cells at three different levels of maturation (day 14 blood BFU-E, day 5–6 marrow CFU-E, and day 10–12 marrow BFU-E). NK cells were enriched from blood by Percoll density gradient centrifugation and by fluorescence- activated cell sorting (FACS), using the human natural killer cell monoclonal antibody, HNK-1. The isolated enriched fractions were cocultured with autologous nonadherent marrow cells or blood null cells and erythropoietin in a methylcellulose erythroid culture system. Cells from low-density Percoll fractions (NK-enriched cells) were predominantly large granular lymphocytes with cytotoxic activity against K562 targets 6–10-fold greater than cells obtained from high- density Percoll fractions (NK-depleted cells). In coculture with marrow nonadherent cells (NA) at NK:NA ratios of 2:1, NK-enriched cells suppressed day 5–6 CFU-E to 62% (p less than 0.025) of controls, whereas NK-depleted cells slightly augmented CFU-E to 130% of controls (p greater than 0.05). In contrast, no suppression of day 10–12 marrow BFU-E was observed employing NK-enriched cells. The NK CFU-E suppressor effects were abolished by complement-mediated lysis of NK-enriched cells with the natural killer cell antibody, HNK-1. Highly purified HNK- 1+ cells separated by FACS suppressed marrow CFU-E to 34% (p less than 0.025) and marrow BFU-E to 41% (p less than 0.025) of controls. HNK- cells had no significant effect on either BFU-E or CFU-E growth. NK- enriched cells were poor stimulators of day 14 blood BFU-E in comparison to equal numbers of NK-depleted cells or T cells isolated by E-rosetting (p less than 0.01). Interferon boosting of NK-enriched cells abolished their suboptimal burst-promoting effects and augmented their CFU-E suppressor effects. These studies provide evidence for a potential regulatory role of NK cells in erythropoiesis. The NK suppressor effect is maximal at the level of the mature erythroid stem cell CFU-E. These findings may explain some hypoproliferative anemias that develop in certain NK cell-activated states.


Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 239 ◽  
Author(s):  
Emilie M. Comeau ◽  
Kayla A. Holder ◽  
Neva J. Fudge ◽  
Michael D. Grant

Expansion of natural killer (NK) cells expressing NKG2C occurs following human cytomegalovirus (HCMV) infection and is amplified by human immunodeficiency virus (HIV) co-infection. These NKG2C-expressing NK cells demonstrate enhanced CD16-dependent cytokine production and downregulate FcεRIγ and promyelocytic leukemia zinc finger protein (PLZF). Lacking NKG2C diminishes resistance to HIV infection, but whether this affects NK cell acquisition of superior antibody-dependent function is unclear. Therefore, our objective was to investigate whether HCMV-driven NK cell differentiation is impaired in NKG2Cnull HIV-infected individuals. Phenotypic (CD2, CD16, CD57, NKG2A, FcεRIγ, and PLZF expression) and functional (cytokine induction and cytotoxicity) properties were compared between HIV–infected NKG2Cnull and NKG2C-expressing groups. Cytokine production was compared following stimulation through natural cytotoxicity receptors or through CD16. Cytotoxicity was measured by anti-CD16-redirected lysis and by classical antibody-dependent cell-mediated cytotoxicity (ADCC) against anti-class I human leukocyte antigen (HLA) antibody-coated cells. Our data indicate highly similar HCMV-driven NK cell differentiation in HIV infection with or without NKG2C. While the fraction of mature (CD57pos) NK cells expressing CD2 (p = 0.009) or co-expressing CD2 and CD16 (p = 0.03) was significantly higher in NKG2Cnull HIV-infected individuals, there were no significant differences in NKG2A, FcεRIγ, or PLZF expression. The general phenotypic and functional equivalency observed suggests NKG2C-independent routes of HCMV-driven NK cell differentiation, which may involve increased CD2 expression.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 690-690 ◽  
Author(s):  
Joseph S. Palumbo ◽  
Kathryn E. Talmage ◽  
Jessica V. Massari ◽  
Christine M. La Jeunesse ◽  
Matthew J. Flick ◽  
...  

Abstract A linkage between hemostatic system components and tumor cell metastatic potential has been well established, but the underlying mechanism(s) by which various circulating and cell-associated coagulation factors and platelets promote tumor cell dissemination remains to be fully defined. One potential mechanism by which tumor cell-associated microthrombi might enhance metastatic potential is by interfering with the cytolytic elimination of tumor cell emboli by natural killer (NK) cells. In order to explore this hypothesis, we studied tumor dissemination in mice lacking either fibrinogen or Gαq, a G protein critical for platelet activation. Comparative studies of experimental lung metastasis in control and Gαq−/− mice showed that loss of platelet activation resulted in a two-orders-of-magnitude decrease in pulmonary metastatic foci formed by either Lewis lung carcinoma or B16 melanoma. The difference in metastatic success was not the result of differences in tumor growth rate, as tumors transplanted into the dorsal subcutis of Gαq−/− and wildtype animals grew at similar rates. Rather, tumor cell fate analyses using radiolabeled tumor cells showed that the survival of tumor cells within the lung was significantly improved in mice that retained platelet activation function relative to Gαq−/− mice with a profound platelet activation defect. In order to examine the potential interplay between platelet activation and natural killer cell function, we compared pulmonary tumor cell survival in cohorts of control and Gαq−/− mice immuno-depleted of NK cells with an anti-asialo GM1 antibody. Remarkably, platelet function was no longer a determinant of metastatic potential in mice lacking NK cells. Given that fibrin(ogen) is also an established determinant of metastatic success we explored whether the influence of this key hemostatic factor on tumor cell dissemination was also mechanistically-coupled to natural killer cell function. We interbred fibrinogen-deficient mice with Gz-Ly49A transgenic mice known to have a constitutive deficit in NK cells. In those cohorts of mice with normal NK cells, we affirmed the earlier finding that fibrinogen deficiency resulted in a significant diminution in metastatic potential. However, consistent with our findings in mice with defective platelet activation, fibrinogen was found to no longer be a determinant of metastatic potential in mice lacking NK cells. These data establish another important link between innate immune surveillance and the hemostatic system. Further, it appears that at least one mechanism by which tumor cell-associated microthrombi increase metastatic potential is by restricting NK cell-mediated tumor cell elimination. Given that NK cell cytotoxicity requires direct contact with any target cell, one attractive model presently being explored is that tumor cell-associated platelets physically block NK cell access to tumor cell emboli.


Sign in / Sign up

Export Citation Format

Share Document